화학공학소재연구정보센터
Journal of the Korean Industrial and Engineering Chemistry, Vol.17, No.5, 443-450, October, 2006
임계 마이셀 농도의 온도 함수와 지수 법칙
Functions and Power Laws of Critical Micelle Concentration with Respect to Temperature
E-mail:
초록
마이셀은 여러 방면에서 폭넓게 활용되고 있다. 그러므로 마이셀이 처음으로 형성되는 농도인 임계 마이셀 농도(임마농, CMC)가 온도에 따라 어떻게 달라지는지 이해하는 것이 중요하다. 이제까지 셀 수 없이 많은 논문에서 임마농의 온도 의존성을 온도의 다항식으로 나타내어 사용하였다. 본 논문에서는 이의 부당함을 밝혔으며, 열역학적 사실과 실험 관찰 결과에 근거하여 임마농의 온도 함수를 새롭게 구하였다. 그리고 여기에서 더 나아가 새로운 식을 이용하여 임마농의 온도에 대한 지수 법칙을 구하였다. 이 식들을 임마농 자료에 맞춤으로써 이들의 정확도를 조사하였는데, 매우 정확한 것으로 판명되었으며, 특히 지수 법칙에서 지수가 계면활성제에 관계없이 2로 나타나서 모든 계면활성제에 사용될 수 있는 식으로 평가되었다.
Micelles have been used in many applications. In these applications it is of prime importance to know how the critical micelle concentration (CMC), above which the micelles are formed, depends on temperature. Up to date polynomial functions of temperature have been used to describe temperature dependence of CMC. In this article it is shown that such polynomials are inadequate tools to express thermal behavior of CMC. Hence, new equations of CMC(T) have been derived on the basis of rigorous thermodynamic equations and experimental observations on CMCs. The new equations fit CMC data excellently, and further they lead to a power law for the CMC. The exponent of the power-law expression is 2 irrespective of surfactant systems, which points to the generality of newly found equations.
  1. Lindman B, Wennerstrom H, Topics in Current Chemistry, vol. 87, Springer-Verlag, Berlin (1980)
  2. Jonsson B, Lindman B, Holmberg K, Kronberg B, Surfactants and Polymers in Aqueous Solution, John Wiley and Sons, New York p. 84 (1997)
  3. Israelachvili JN, Intermolecular and Surface Forces, 2nd ed., Academic Press, San Diego, p. 381 (1992)
  4. Fendler JH, Membrane Mimetic Chemistry, Characterizations and Applications of Micelles, Microemulsion, Monolayers, Bilayers, Vesicles, Host-Guest Systems and Polyions, John Wiley, New York (1982)
  5. Fendler JH, Membrane Mimetic Approach to Advanced Materials, Springer-Verlag, Berlin (1992)
  6. Fox MA, Res. Chem. Intermed., 15, 153 (1991)
  7. Pileni MP, Langmuir, 13(13), 3266 (1997) 
  8. Kresge CT, Leonowicz ME, Roth WJ, Vartuli JC, Beck JS, Nature, 359, 710 (1992) 
  9. http://akunger1.chemie.uni-maiz.de/Allan/Welcome.html
  10. Beck JS, Vartuli JC, Roth WJ, Leonowicz ME, Hresge CT, Smith KD, Olson TW, Sheppard EW, McCullen SB, Higgins JB, Schenker JL, J. Am. Chem. Soc., 114, 10834 (1992) 
  11. Sun T, Ying JY, Nature, 389(6652), 704 (1997) 
  12. Lu YF, Ganguli R, Drewien CA, Anderson MT, Brinker CJ, Gong WL, Guo YX, Soyez H, Dunn B, Huang MH, Zink JI, Nature, 389(6649), 364 (1997) 
  13. Bagshaw SA, Prouzet E, Pinnavaia TJ, Science, 269(5228), 1242 (1995) 
  14. Morawetz H, Adv. Catal., 20, 341 (1969)
  15. Moroi Y, Micelles: Theoretical and Applied Aspects, Chapter 11, Plenum, New York (1992)
  16. Miller DD, Magid LJ, Evans DF, J. Phys. Chem., 94, 5921 (1990) 
  17. Becher P, in M. J. Schick (Ed.), Nonionic Surfactants, Marcel Dekker, New York (1967)
  18. Flockhart BD, J. Colloid Sci., 16, 484 (1961) 
  19. Crook EH, Fordyce DB, Trebbi GF, J. Phys. Chem., 67, 1987 (1963) 
  20. La Mesa C, Colloid Polym. Sci., 268, 959 (1990) 
  21. La Mesa C, Colloids Surf., 3, 329 (1989) 
  22. La Mesa C, Ranieri ZA, Terenzi M, J. Surface Sci. Tech., 6, 151 (1990)
  23. La Mesa C, J. Phys. Chem., 94, 323 (1990) 
  24. Stasiuk NB, Schramm LL, J. Colloid Interface Sci., 324, 178 (1996)
  25. Kang KH, Kim HU, Lim KH, Colloids Surf. A: Physicochem. Eng. Asp., 189, 113 (2001) 
  26. Kim HU, Lim KH, Colloids Surf. A, 235, 121 (2004) 
  27. Kim HU, Lim KH, Bull. Korean Chem. Soc., 24, 1449 (2003)
  28. Kim HU, Lim KH, Kor. J. Oil Chem. Soc., 18, 325 (2001)
  29. Kresheck GC, Hargraves WA, J. Colloid Interface Sci., 48, 481 (1974) 
  30. Tomasic V, Chittofrati A, Kallay N, Colloids Surf. A: Physicochem. Eng. Asp., 104, 95 (1995) 
  31. Kiraly A, Dekany I, J. Colloid Interface Sci., 242, 214 (2002) 
  32. Paula S, Sus W, Tuchtenhagen J, Blume A, J. Phys. Chem., 9, 11742 (1995) 
  33. Muller N, Langmuir, 9, 96 (1993) 
  34. Gilli P, Ferretti V, Gilli G, Borea PA, J. Phys. Chem., 98, 1515 (1993)
  35. Madan B, Lee B, Biophys. Chem., 51, 279 (1994) 
  36. Lumry R, Rajender S, Biopolymers, 9, 1125 (1970) 
  37. Jolicoeur C, Philip RP, Can. J. Chem., 52, 1834 (1974) 
  38. Krishnan VC, Friedman LH, J. Solution Chem., 2, 37 (1974) 
  39. Sugihara G, Hisatomi M, J. Colloid Interface Sci., 219(1), 31 (1999) 
  40. Lim KH, manuscript in preparation
  41. Lim KH, Colloids, Interfaces, and Polymers (Lecture Note) (2005)
  42. Gill SJ, Nichols NF, Wadso I, J. Chem. Thermodyn., 8, 445 (1976) 
  43. Stead JA, Taylor HJ, J. Colloid Interface Sci., 30, 482 (1969) 
  44. Chen LJ, Lin SY, Huang CC, Chen EM, Colloids Surf. A: Physicochem. Eng. Asp., 135, 175 (1998) 
  45. Mosquera V, del Rio JM, Attwood D, Garcia M, Jones MN, Prieto G, Suarez MJ, Sarmiento F, J. Colloid Interface Sci., 206(1), 66 (1998) 
  46. Fugiwara M, Okano T, Nakashima TH, Nakamua AA, Sugihara H, Colloid Polym. Sci., 275, 474 (1977) 
  47. Sugihara G, Hisatomi M, J. Colloid Interface Sci., 219(1), 31 (1999) 
  48. Kim HU, Ph. D. Dissertation, Chung-Ang University (2002)
  49. Taboada P, Attwood D, Garcia M, Jones MN, Ruso JM, Mosquera V, Sarmiento F, J. Colloid Interface Sci., 221(2), 242 (2000) 
  50. Attwood D, Boitard E, Dubes JP, Tachoire H, J. Colloid Interface Sci., 227(2), 356 (2000) 
  51. Mukergee D, Mysels KJ, Critical Micelle Concentrations of Aqueous Surfactant Systems, NSRDS-NBS 36 (1971)