화학공학소재연구정보센터
Macromolecular Research, Vol.14, No.4, 449-455, August, 2006
Ionic Cluster Mimic Membranes Using Ionized Cyclodextrin
E-mail:
Ionic cluster mimic, polymer electrolyte membranes were prepared using polymer composites of crosslinked poly(vinyl alcohol) (PVA) with sulfated- β-cyclodextrins ( β-CDSO3H) or phosphated- β-cyclodextrins ( β-CDPO(OH)2). When Nafion, developed for a fuel cell using low temperature, polymer electrolyte membranes, is used in a direct methanol fuel cell, it has a methanol crossover problem. The ionic inverted micellar structure formed by micro-segregation in Nafion, known as ionic cluster, is distorted in methanol aqueous solution, resulting in the significant transport of methanol through the membrane. While the ionic structure formed by the ionic sites in either β-CDSO3H or β-CDPO(OH)2 in this composite membrane is maintained in methanol solution, it is expected to reduce methanol transport. Proton conductivity was found to increase in PVA membranes upon addition of ionized cyclodextrins. Methanol permeability through the PVA composite membrane containing cyclodextrins was lower than that of Nafion. It is thus concluded that the structure and fixation of ionic clusters are significant barriers to methanol crossover in direct methanol fuel cells.
  1. Tricoli V, Carretta N, Bartolozzi M, J. Electrochem. Soc., 147(4), 1286 (2000) 
  2. Xing PX, Robertson GP, Guiver MD, Mikhailenko SD, Kaliaguine S, J. Polym. Sci. A: Polym. Chem., 42(12), 2866 (2004) 
  3. Boddeker KW, Peinemann KV, Nunes SP, J. Membr. Sci., 185(1), 1 (2001) 
  4. Gierke TD, Munn GE, Wilson FC, J. Polym. Sci. B: Polym. Phys., 19, 1687 (1981)
  5. Mauritz KA, Moore RB, Chem. Rev., 104(10), 4535 (2004) 
  6. Szejtli J, Chem. Rev., 98(5), 1743 (1998) 
  7. Kuranuk K, Suzuki M, Ohono M, Takeyama K, Tanigami T, Yamaura K, Matsuzawa S, Rep. Poval Committee, 93, 70 (1988)
  8. Pivovar BS, Wang YX, Cussler EL, J. Membr. Sci., 154(2), 155 (1999) 
  9. Kim SY, Shin HS, Lee YM, Jeong CN, J. Appl. Polym. Sci., 73(9), 1675 (1999) 
  10. Yamasaki A, Ogasawara K, Mizoguchi K, J. Appl. Polym. Sci., 54(7), 867 (1994) 
  11. Yamasaki A, Mizoguchi K, J. Appl. Polym. Sci., 53(12), 1669 (1994) 
  12. Miyata T, Iwamoto T, Uragami T, J. Appl. Polym. Sci., 51(12), 2007 (1994) 
  13. Chen HL, Wu LG, Tan J, Zhu CL, Chem. Eng. J., 78(2-3), 159 (2000) 
  14. Eddaoudi H, Deratani A, Tingry S, Sinan F, Seta P, Polym. Int., 52, 1390 (2003) 
  15. Kang MS, Kim JH, Won J, Moon SH, Kang YS, J. Membr. Sci., 24, 127 (2005)
  16. Won J, Park HH, Kim YJ, Choi SW, Ha HY, Oh IH, Kim HS, Kang YS, Ihn KJ, Macromolecules, 36(9), 3228 (2003) 
  17. Won J, Choi SW, Kang YS, Ha HY, Oh IH, Kim HS, Kim KT, Jo WH, J. Membr. Sci., 214(2), 245 (2003) 
  18. Cho HD, Won JO, Ha HY, Kang YS, Macromol. Res., 14(2), 214 (2006)
  19. Vargas MA, Vargas RA, Mellander BE, Electrochim. Acta, 44, 4227 (1999) 
  20. Kim J, Kim B, Jung B, Kang YS, Ha HY, Oh IH, Ihn KJ, J. Macromol. Rapid Commun., 23, 753 (2002) 
  21. Tricoli V, J. Electrochem. Soc., 145(11), 3798 (1998) 
  22. Carretta N, Tricoli V, Picchioni F, J. Membr. Sci., 166(2), 189 (2000) 
  23. Kim DS, Park HB, Lee CH, Lee YM, Moon GY, Nam SY, Hwang HS, Yun TI, Rhim JW, Macromol. Res., 13(4), 314 (2005)
  24. Kang MS, Choi YJ, Moon SH, J. Membr. Sci., 207(2), 157 (2002) 
  25. Smitha B, Sridhar S, Khan AA, Macromolecules, 37(6), 2233 (2004) 
  26. Wang J, Wei M, Rao G, Evans DG, Duan X, J. Solid State Chem., 177, 366 (2004) 
  27. Rhim JW, Park HB, Lee CS, Jun JH, Kim DS, Lee YM, J. Membr. Sci., 238(1-2), 143 (2004) 
  28. Kim DS, Park HB, Rhim JW, Lee YM, J. Membr. Sci., 240(1-2), 37 (2004) 
  29. Tashiro K, Hama H, Macromol. Res., 12(1), 1 (2004)
  30. Zhou XY, Weston J, Chalkova E, Hofmann MA, Ambler CM, Allcock HR, Lvov SN, Electrochim. Acta, 48(14-16), 2173 (2003)