화학공학소재연구정보센터
Clean Technology, Vol.12, No.2, 67-77, June, 2006
소규모 하수처리를 위한 파일럿 규모 이중슬러지 KNRⓡ (Kwon's nutrient removal) 시스템의 영얌염류 제거성능 평가
Evaluation of the Nutrient Removal Performance of the Pilot-scale KNRⓡ (Kwon's Nutrient Removal) System with Dual Sludge for Small Sewage Treatment
E-mail:
초록
본 연구에서 소규모 하수고도처리를 위한 이중슬러지(Dual sludge) KNRⓡ (Kwon's nutrient removal) 시스템이 개발되었다. KNRⓡ 시스템은 부유성장식 탈질미생물과 부착성장식 질산화미생물을 분리시킨 이중슬러지 공정으로 최초침전조, 혐기조, 무산소조, 농축조의 복합기능을 수행하는 UMBR (Upflow multi-layer bioreactor)과 펠렛형 담체가 충진된 호기성 담체조로 구성되어 있다. 소규모 하수처리시 본 개발공정의 안정성과 처리성능을 평가하기 위해 처리용량 50 m3/d 규모의 파일럿 플랜트를 고도처리 공정으로 개선공사 중인 처리용량 50 m3/d 규모의 실제 소규모 마을하수처리장에 적용하였다. UMBR과 담체조의 체류시간은 각각 4.7 h와 7.2h이었으며, 반응조 수온은 18.1 ~ 28.1℃이었다. 유입 하수량과 유입수의 BOD/N의 변동폭이 컸음에도 불구하고 파일럿 플랜트는 안정된 처리성능을 보였다. 전체 실험기간 중 처리수의 CODCr, CODMn, BOD5, TN, TP의 평균 농도는 11.0 mg/L, 8.8 mg/L, 4.2 mg/L, 3.5 mg/L, 9.8 mg/L, 0.87/0.17 mg/L (poly aluminium chloride(PAC) 투입/미투입)이었으며, 제거율을 각각 95.3%, 87.6%, 96.3%, 96.5%, 68.2%, 55.4/90.3% 이었다. 잉여슬러지 발생량은 A2O와 Bardenpho 등과 같은 단일슬러지를 이용하는 고도처리공정과 비교시 약 1.9~3.8 배 낮은 0.026 kg-DS/m3 and 0.220 kg-DS/kg-BOD로 나타났다.
A simple dual sludge process, called as KNRⓡ (Kwon's Nutrient Removal) system, was developed for small sewage treatment. It is a hybrid system that consists of an UMBR (Upflow multi-layer bioreactor) as anaerobic and anoxic reactor with suspended denitrifier and a post aerobic biofilm reactor, filled with pellet-like media, with attached nitrifier. To evaluate the stability and performance of this system for small sewage treatment, the pilot-scale KNRⓡ plant with a treatment capacity of 50 m3/d was practically applied to the actual sewage treatment plant, which was under retrofit construction during pilot plant operation, with a capacity of 50 m3/d in a small rural community. The HRTs of a UMBR and a post aerobic biofilm reactor were about 4.7 h and 7.2 h, respectively. The temperature in the reactor varied from 18.1℃ to 28.1℃. The pilot plant showed stable performance even though the pilot plant had been the severe fluctuation of influent flow rate and BOD/N ratio. During a whole period of this study, average concentrations of CODCr, CODMn, BOD5, TN, and TP in the final effluent obtained from this system were 11.0 mg/L, 8.8 mg/L, 4.2 mg/L, 3.5 mg/L, 9.8 mg/L, and 0.87/0.17 mg/L (with/without poly aluminium chloride(PAC)), which corresponded to a removal efficiency of 95.3%, 87.6%, 96.3%, 96.5%, 68.2%, and 55.4/90.3%, respectively. Excess sludge production rates were 0.026 kg-DS/m3-sewage and 0.220 kg-DS/kg-BOD lower 1.9 to 3.8 times than those in activated sludge based system such as A2O and Bardenpho.
  1. Collivignarelli C, Urbini G, Farneti A, Bassetti A, Barbaresi U, Water Sci. Technol., 34, 187 (1990)
  2. Chernicharo CA, Machado RMG, Water Sci. Technol., 38, 325 (1998) 
  3. Garuti G, Dohanyos M, Tilche A, Water Sci. Technol., 25, 383 (1992)
  4. Bodik I, Kratochvil K, Gasparikova E, Hutnan M, Bioresour. Technol., 86(1), 79 (2003) 
  5. Kwon JC, Shin HS, Bae BW, Yoo KS, "Wastewater treatment plant comprising upflow unaerobic reactor and wastewater treatment method using thereof" U.S. Patent, 6,352,643 B1 (2002)
  6. 권중천, 문서연, 양창환, 심광보, 대한환경공학회지, 25(1), 65 (2003)
  7. Kwon JC, An JY, Shim KB, Shin HS, Jun HB, "Nitrogen and phosphorus removal of pilot scale plant using UMBR (upflow multi-layer bioreactor) as anaerobic/anoxic reactor" WEFTECⓡ 2003, Los Angeles (2003)
  8. Kwon JC, Park HS, An JY, Shim KB, Kim YH, Shin HS, Water Sci. Technol., 52, 443 (2005)
  9. APHA-AWWA-WEF, “Standard Methods for examination of water and wastewater” 20th ed., American Public Health Association, New York (1998)
  10. Narkis N, Rebhun M, Sheindorf C, Water Res., 13(1), 93 (1979) 
  11. Tchobanoglous G, Burton FL, Stensel HD, “Wastewater engineering: Treatment and reuse” 4th ed, Metcalf & Eddy Inc., McGraw-Hill, New York (2003)
  12. Beer C, Bergenthal JF, Wang LK, "A study of endogenous nitrate respiration of activated sludge" Proc. 9th Mid-Atlantic Ind. Waste Conf., Bucknell, 207-215 (1977)
  13. 신항식, 서창원, 이상형, 정형석, 임재림, 권중천, 대한환경공학회, 26(3), 355 (2004)
  14. Wei YS, van Houten RT, Borger AR, Eikelboom DH, Fan YB, Water Res., 37, 4453 (2003) 
  15. Randall CW, Barnard JL, Stensel HD, “Water quality management library, Vol. 5. Design and retrofit of wastewater treatment plants for biological nutrient removal” Technomic Pub., Lancaster, Pennsylvania (1992)