화학공학소재연구정보센터
Clean Technology, Vol.10, No.1, 9-17, March, 2004
FEMLAB를 이용한 직접메탄올 연료전지(DMFC) 지배방정식의 전산모사
Simulation of governing equations for direct methanol fuel cell(DMFC) using FEMLAB
초록
수소이온 교환 막을 가진 직접 메탄올 연료전지(DMFC)는 기존의 전력원에 비해 많은 장점을 가지고 있다. 그러나 직접메탄올 연료전지는 메탄올 crossover, 음극의 과전압, limiting current density 등 해결해야할 문제들이 있다. 직접메탄올 연료전지의 물리화학적 현상은 여러 편미분방정식들로 표현 가능하다. 본 연구에서는 이러한 편미분방정식을 풀기위해 FEMLAB를 이용하였다. FEMLAB은 PDE를 기초로 문제를 정의하고 1, 2, 3D, 비선형, 그리고 시간의 함수 형태의 편미분방정식들로 정의된 시스템을 전산모사하기위해 디자인되었다. 시스템의 메탄올 농도 분포를 알아보기 위해 촉매층에서 전기화학적반응식으로 Tafel식을 적용하여 전산모사를 수행하였다. 전산모사를 통해 음극의 촉매층에서 메탄올 농도의 급격한 감소는 직접 메탄올 연료전지의 성능저해의 요인임을 확인하였다.
Direct methanol fuel cell(DMFC) with proton exchange membrane (PEM) has advantages over the conventional power source (e.g. vehicle). DMFC, however, has a problem to be solved such as methanol crossover, high anodic overpotential and limiting current density, etc. The physicochemical phenomena in DMFC can be described by coupled PDEs (partial differential equations), which can be solved by a PDE solver. In this paper, we utilized a commercial software FEMLAB to solve the PDEs. The FEMLAB is one of the software programs available which are developed as a solver for building physics problems based on PDEs and is designed ot simulate systems of coupled PDEs which may be 1D, 2D, 3D, non-liner and time dependent. We performed simulation using the Tafel equation as an electrochemical reaction model to analyze methanol concentration profile in DMFC system. We confirm that the rapid decrease of methanol concentration at anodic catalyst layer with the increase of the current density is a main reason of the low performance in DMFC through simulation results.
  1. Blomen LJMJ, Mugerwa MN, Plenum Press (1993)
  2. Appleby AJ, Foulkes FR, "Feul Cell Handbook", Van Norstrand Reinhol, 3 (1989)
  3. Jeng KT, Chen CW, J. Power Sources, 121, 367 (2002)
  4. Halpert G, Narayanan SR, Valdez T, Chun W, Fank H, Kindler A, Surampudi S, Kosek J, Cropley C, LaConti A, Proceeding (1997)
  5. Baldauf M, Preidel W, J. Power Sources, 84(2), 161 (1999)
  6. Ren XM, Zelenay P, Thomas S, Davey J, Gottesfeld S, J. Power Sources, 86(1-2), 111 (2000)
  7. Dohle H, Jung R, Kimiaie N, Mergel J, Muller M, J. Power Sources, 124(2), 371 (2003)
  8. Kulikovsky AA, Electrochem. Commun., 5, 530 (2003)
  9. Sandhu SS, Crowther RO, Krishnan SC, Fellner JP, Electrochim. Acta, 48(14-16), 2295 (2003)
  10. COMSOL AB. FEMLAB Version 2.3 : "Chemical Engineering Module", 2, 279
  11. Wang ZH, Wang CY, "Mathematical modeling of liquid-feed direct methanol fuel cells", in Proc. of direct Methanol Feul Cell Symposium, March, Washington DC (2001)
  12. Sundmacher K, Schultz T, Zhou S, Scott K, Ginkel M, Gilles ED, Chem. Eng. Sci., 56(2), 333 (2001)
  13. Ren X, Springer TE, Gottesfeld S, J. Electrochem. Soc., 147(1), 92 (2000)
  14. McGashan ML, Williamson AG, J. Chem. Eng. Data, 21, 196 (1976)
  15. Yaws CL, "Handbook of Transport Property Data: viscosity, thermal conductivity, and diffusion coefficient of liquid and gases", Gulf Pub Co., Houston, Tex (1995)