화학공학소재연구정보센터
Clean Technology, Vol.8, No.3, 119-128, September, 2002
수용성 합성 절삭유의 재사용을 위한 한외여과 연구
An Ultrafiltration Study for the Recycling of Synthetic Water-Based Cutting Oil
초록
분획분자량이 50,000인 acrylonitrile과 vinyl chloride의 공중합체 재질의 한외여과막(KOCH Membrane System, HFI-45-CM50) 과 분획분자량이 100,000인 polysulfone 한외여과막(KOCH Membrane System, HFI-43-CM100)을 사용하여 순수에 3% 농도로 희석한 수용성 합성 절삭유의 투과특성을 연구하였다. 친수성 분리막인 HFI-45-CM50은 합성 절삭유의 투과실험에서 높은 투과유속과 오일성분 투과율을 보였으나 소수성 분리막인 HFI-43-CM100의 경우에는 오일 투과율은 HFI-45-CM50과 유사하였으나 투과유속은 훨씬 저하되었는데 이는 합성 절삭유가 소수성 막의 표면을 쉽게 적셔서 친수성 막에 비해 더 심한 막오염을 유발시킨다는 것을 의미한다. 또한 분리막 재질의 특성이 합성 절삭유의 투과특성에 미치는 영향이 분리막의 평균 기공크기의 영향보다 훨씬 더 크다는 사실을 알 수 있었다. 막오염을 감소시키기 위해 질소에 의한 역세척 실험을 수행한 결과 역세척 효과가 친수성 분리막에서는 뚜렷이 나타났으나 소수성 분리막의 경우에는 오히려 투과유속의 감소를 초래하였다. 폐합성 절삭유에 의해 오염된 분리막의 세척실험에서는 세척용액에 분리막을 72시간 이상 침지시킨 후 역세척을 수행할때 가장 높은 투과유속의 회복율을 얻을 수 있었다.
In the present study the membrane filtration characteristics of a commercially available synthetic water-based cutting oil through two kinds of ultrafiltraiton membranes (HFI-45-CM50 and HFI-43-CM100) with molecular weight cut-offs of 50,000 and 100,000, respectively, have been investigated in detail. Among these membreaes, the hydrophilic one (HFI-45-CM50) was found to show a satisfactory result for both the permeate flux and the permeability of oil components, whereas the permeate flux obtained with the hydrophobic membrane (HFI-43-CM100) appears to be significantly low, indicating that synthetic cutting oil was easily wetted on the hydrophobic membrane surface and induced more membrane fouling. The effect of material characteristics of the membrane on the filtration characteristics was found to be much more signficant compared with the mean pore size of the membrand. Backflushing by nitrogen gas was applied to reduce the formation of a gel layer and membrane fouling. With the hydrophilic membrane, the backflushing was found to increase the permeate flux, whereas the backflushing resulted in a decrease in flux for the hydrophobic membrane. The flux recovery was observed to be highest when the membranes fouled with waste synthetic cutting oil were immersed into a cleanning solution for more than 72 hours and then backflushed by nitrogen gas.
  1. Cheryan M, "Ultrafiltration and Microfiltration Handbook", Technomic Pub. Co. Inc., Lancaster (1998)
  2. Yamazaki T, Jpn. J. Tribol., 42, 847 (1997)
  3. Takeda K, Jpn. J. Tribol., 42, 859 (1997)
  4. Hobson T, Pollution Eng., 10, 52 (1996)
  5. Dick RM, Foltz GJ, AES Magazine, 6, 8 (1988)
  6. 유승현, 윤활관리, 17, 54 (1990)
  7. Azad HS, "Industrial Wastewater Management Handbook", McGraw-Hill Book Co., New York (1976)
  8. Oolman t, Castaldi FJ, Behrens GP, Owen ML, Hydrocarb. Process., 8, 67 (1992)
  9. 정진우, 윤활관리, 18(4), 29 (1991)
  10. Chen ASC, Stencel N, Ferguson D, J. Membr. Sci., 162(1-2), 219 (1999)
  11. Cumming IW, Holdich RG, Smith ID, Water Res., 17, 3587 (1999)
  12. Cumming IW, Holdich RG, Smith ID, J. Membr. Sci., 169(1), 147 (2000)
  13. Field RW, Wu D, Howell JA, Gupta BB, "Critical flux concept for microfiltration fouling", 100, 259 (1995)
  14. Seo GT, Lee TS, Moon BH, Choi KS, Lee HD, Water Sci. Technol., 36, 275 (1997)
  15. Zeman LJ, Zydney AL, "Microfiltration and Ultrafiltration - Principles and Applications", Marcel Dekker, New York (1996)
  16. Ho WSW, Sirkar KK, "Membrane Handbook", Van Nostrand Reinhold, New York (1992)
  17. Skold RO, Lubric. Eng., 47, 653 (1991)
  18. Lipp P, Lee CH, Fane AG, Fell CJD, J. Membr. Sci., 36, 161 (1988)
  19. Lindau J, Jonsson AS, J. Membr. Sci., 87(1-2), 71 (1994)
  20. Mahdi SM, Skold RO, Lubric. Eng., 47, 686 (1991)
  21. Cakl J, Bauer I, Dolecek P, Mikulasek P, Desalination, 127(2), 189 (2000)
  22. Koltuniewicz AB, Field RW, Arnot TC, J. Membr. Sci., 102, 193 (1995)
  23. Koltuniewicz AB, Field RW, Desalination, 105, 79 (1996)
  24. Barman BN, Lubric. Eng., 50, 351 (1994)
  25. Childers JC, Huang SJ, Romba M, Lubric. Eng., 46, 349 (1990)
  26. Tsubouchi M, Yamasaki N, Yanagisawa K, Anal. Chem., 57, 783 (1985)
  27. 김종표, 전명석, 김재진, 정건용, 전성덕, 멤브레인, 8, 94 (1998)