화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.23, No.4, 678-682, July, 2006
Fabrication of high aspect ratio nanostructures using capillary force lithography
E-mail:
A new ultraviolet (UV) curable mold consisting of functionalized polyurethane with acrylate group (MINS101m, Minuta Tech.) has recently been introduced as an alternative to replace polydimethylsiloxane (PDMS) mold for sub-100-nm lithography. Here, we demonstrate that this mold allows for fabrication of various high aspect ratio nanostructures with an aspect ratio as high as 4.4 for 80 nm nanopillars. For the patterning method, we used capillary force lithography (CFL) involving direct placement of a polyurethane acrylate mold onto a spin-coated polymer film followed by raising the temperature above the glass transition temperature of the polymer (Tg). For the patterning materials, thermoplastic resins such as polystyrene (PS) and poly(methyl methacrylate) (PMMA) and a zinc oxide (ZnO) precursor were used. For the polymer, micro/nanoscale hierarchical structures were fabricated by using sequential application of the same method, which is potentially useful for mimicking functional surfaces such as lotus leaf.
  1. Ball P, Nature, 400, 507 (1999) 
  2. Bietsch A, Michel B, J. Appl. Phys., 88, 4310 (2000) 
  3. Brandup J, Immergut EH, Polymer Handbook, Wiley, New York (1989)
  4. Cheng JY, Ross CA, Chan VZH, Thomas EL, Lammertink RGH, Vancso GJ, Adv. Mater., 13, 1174 (2001) 
  5. Choi KM, Rogers JA, J. Am. Chem. Soc., 125(14), 4060 (2003) 
  6. Choi SJ, Yoo PJ, Baek SJ, Kim TW, Lee HH, J. Am. Chem. Soc., 126(25), 7744 (2004) 
  7. Chou SY, Krauss PR, Renstrom PJ, Science, 272(5258), 85 (1996) 
  8. Choy JH, Jang ES, Won JH, Chung JH, Jang DJ, Kim YW, Adv. Mater., 15, 1911 (2003) 
  9. Csucs G, Kunzler T, Feldman K, Robin F, Spencer ND, Langmuir, 19(15), 6104 (2003) 
  10. Delamarche E, Schmid H, Michel B, Biebuyck H, Adv. Mater., 9, 741 (1997) 
  11. Feng L, Li SH, Li YS, Li HJ, Zhang LJ, Zhai J, Song YL, Liu BQ, Jiang L, Zhu DB, Adv. Mater., 14, 1857 (2002) 
  12. Haes AJ, Van Duyne RP, J. Am. Chem. Soc., 124(35), 10596 (2002) 
  13. Hehn M, Ounadjela K, Bucher JP, Rousseaux F, Decanini D, Bartenlian B, Chappert C, Science, 272(5269), 1782 (1996) 
  14. Khang DY, Kang H, Kim T, Lee HH, Nano Lett., 4, 633 (2004) 
  15. Khang DY, Lee HH, Adv. Mater., 16, 176 (2004) 
  16. Kim YS, Lee HH, Hammond PT, Nanotechnology, 14, 1140 (2003) 
  17. Kim YS, Suh KY, Lee HH, Appl. Phys. Lett., 79, 2285 (2001) 
  18. Krauss PR, Chou SY, Appl. Phys. Lett., 71, 3174 (1997) 
  19. Lee KB, Kim DJ, Yoon KR, Kim Y, Choi IS, Korean J. Chem. Eng., 20(5), 956 (2003)
  20. Lee KB, Park S, Mirkin CA, Smith JC, Mrksich M, Science, 295, 1702 (2002) 
  21. Neinhuis C, Barthlott W, Ann. Bot., 79, 667 (1997) 
  22. Odom TW, Love JC, Wolfe DB, Paul KE, Whitesides GM, Langmuir, 18(13), 5314 (2002) 
  23. Poborchii VV, Tada T, Kanayama T, Appl. Phys. Lett., 75, 3276 (1999) 
  24. Schmid H, Michel B, Macromolecules, 33(8), 3042 (2000) 
  25. Seo SM, Park JY, Lee HH, Appl. Phys. Lett., 86(13) (2005)
  26. Suh KY, Kim YS, Lee HH, Adv. Mater., 13, 1386 (2001) 
  27. Suh KY, Langer R, Lahann J, Appl. Phys. Lett., 83, 4250 (2003) 
  28. Suh KY, Lee HH, Adv. Funct. Mater., 12, 405 (2002) 
  29. Wanke MC, Lehmann O, Muller K, Wen QZ, Stuke M, Science, 275(5304), 1284 (1997) 
  30. Wu S, Polymer Interface and Adhesion, Dekker, New York (1982)
  31. Xia YN, Whitesides GM, Annu. Rev. Mater. Sci., 28, 153 (1998) 
  32. Yang SM, Ozin GA, Chem. Commun., 24, 2507 (2000)