화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.23, No.3, 447-454, May, 2006
An extension of the group contribution method for estimating thermodynamic and transport properties. Part IV. Noble gas mixtures with polyatomic gases
E-mail:
Earlier work on the group contribution method applied to Kihara potentials is extended to noble-polyatomic gas mixtures for the calculation of second virial cross coefficients, mixture viscosities and binary diffusion coefficients of dilute gas state using a single set of gas group parameters. Previously estimated parameter values for pure gas groups by our work [Oh, 2005; Oh and Sim, 2002; Oh and Park, 2005] were used. Assuming that noble-polyatomic gas mixtures examined are chemically dissimilar, a group binary interaction coefficient, kij, gc, was assigned to each interaction between noble-polyatomic gas groups, and 25 group binary interaction parameter values (kHe-H2, gc, kHe-N2, gc, kHe-CO, gc, kHe-CO2, gc, kHe-O2, gc, kHe-NO, gc, kHe-N2O, gc; kNe-H2, gc, kNe-N2, gc, kNe-CO, gc, kNe-CO2, gc, kNe-O2, gc; kAr-H2, gc, kAr-N2, gc; kAr-CO, gc, kAr-CO2, gc, kKr-O2, gc; kKr-H2, gc, kKr-N2, gc, kKr-CO, gc, kAr-CO2, gc; kXe-H2, gc, kXe-N2, gc, kXe-CO, gc, kXe-CO2, gc) were determined by fitting second virial cross coefficients data. Application of the model shows that second virial cross coefficient data are represented with good results comparable to values predicted by means of the corresponding states correlation. Reliability of the model for mixture viscosity predictions is proved by comparison with the Lucas method. And prediction results of binary diffusion coefficients are in excellent agreement with literature data and compared well with values obtained by means of the Fuller method. Improvements of the group contribution model are observed when group binary interaction coefficients are adopted for mixture property predictions.
  1. Bondi A, J. Phys. Chem., 68(3), 441 (1964)
  2. Chapman S, Cowling TG, The mathematical theory of nonuniform gases, 3rd ed., Cambridge University Press, New York (1970)
  3. Campbell SW, Fluid Phase Equilib., 47, 47 (1989) 
  4. Dymond JH, Smith EB, The virial coefficients of pure gases and mixtures - a critical compilation, Clarendon Press, Oxford (1980)
  5. Dymond JH, Marsh KN, Wilhoit RC, Virial coefficients of pure gases and mixtures, Edited by Fenkel, M. and Marsh, K. N., Landolt-Bornstein - Group IV Physical Chemistry, 21, Springer-Verlag, Heidelberg (2003)
  6. Fuller EN, Schettler PD, Giddings JC, Ind. Eng. Chem., 58(5), 18 (1966) 
  7. Gavril D, Atta KR, Karaiskakis G, Fluid Phase Equilib., 218(2), 177 (2004) 
  8. Giddings JC, Seager SL, Ind. Eng. Chem. Fundam., 1, 277 (1962) 
  9. Haghighi B, Fathabadi M, Papari MM, Fluid Phase Equilib., 203(1-2), 205 (2002) 
  10. Hellemans JM, Kestin J, Ro ST, J. Chem. Phys., 57(9), 4038 (1972) 
  11. Hirschfelder JO, Curtiss CF, Bird RB, Molecular theory of gases and liquids, Wiley, New York (1954)
  12. Holsen JN, Strunk MR, Ind. Eng. Chem. Fundam., 3, 143 (1964) 
  13. IMSL, IMSL STAT/LIBRARY: Regression, IMSL, Houston (1994)
  14. Kestin J, Kobayashi Y, Wood RT, Physica, 32, 1065 (1966) 
  15. Kestin J, Yata J, J. Chem. Phys., 49(11), 4780 (1968) 
  16. Kestin J, Ro ST, Wakeham WA, J. Chem. Phys., 56(8), 4036 (1972) 
  17. Kestin J, Ro ST, Wakeham WA, J. Chem. Phys., 56(12), 5837 (1972) 
  18. Kestin J, Ro ST, Ber. Bunsen-Ges. Phys. Chem., 20, 20 (1974)
  19. Kestin J, Ro ST, Ber. Bunsen-Ges. Phys. Chem., 86, 948 (1982)
  20. Kestin J, Ro ST, Wakeham WA, Ber. Bunsen-Ges. Phys. Chem., 88, 450 (1984)
  21. Kihara T, Intermolecular forces, Wiley, New York (1978)
  22. Lide DR, Handbook of chemistry and physics, 76th Ed., CRC Press (1995)
  23. Lucas K, Phase equilibria and fluid properties in the chemical industry, Dechema, Frankfurt (1980)
  24. Mason EA, Marrero TR, Advances in Atomic and molecular physics, Edited by Bates, D. R. and Esterman, I., Academic Press, NY, Vol. 6 (1970)
  25. Vannhu N, Deiters UK, Fluid Phase Equilib., 118(2), 153 (1996) 
  26. Oh SK, A group interaction model for second virial coefficients of pure gases and mixtures, M.S. Thesis, University of S. Florida, Tampa (1989)
  27. Oh SK, Campbell SW, Fluid Phase Equilib., 129(1-2), 69 (1997) 
  28. Oh SK, Sim CH, Korean J. Chem. Eng., 19(5), 843 (2002)
  29. Oh SK, Park KH, Korean J. Chem. Eng., 22(2), 268 (2005)
  30. Oh SK, Korean J. Chem. Eng., 22(6), 949 (2005)
  31. Poling BE, Prausnitz JM, OConnell JP, The properties of gases and liquids, 5th ed., McGraw Hill, NY (2000)
  32. Schramm B, Muller W, Ber. Bunsenges. Physik. Chem., 86, 110 (1982)
  33. Seager SL, Geertson LR, Giddings JC, J. Chem. Eng. Data, 8, 168 (1963) 
  34. Saxena SC, Mason EA, Mol. Phys., 2, 379 (1959) 
  35. Trengove RD, Robjohns HL, Dunlop PJ, Ber. Bunsenges. Phys. Chem., 88, 450 (1984)
  36. Tsonopoulos C, Dymond JM, Szafranski AM, Pure Appl. Chem., 61(6), 1387 (1989)
  37. Tsonopoulos C, Dymond JH, Fluid Phase Equilib., 133(1-2), 11 (1997) 
  38. Tsonopoulos C, AIChE J., 20(2), 263 (1974) 
  39. Walker RE, Westenberg AA, J. Chem. Phys., 29, 1139 (1958)