- Previous Article
- Next Article
- Table of Contents
Polymer(Korea), Vol.30, No.3, 271-278, May, 2006
폴리(비닐 알코올) 수용액의 준희박농도 영역에서 사슬 거동에 대한 수소결합의 효과
Hydrogen Bond Effect on Chain Behavior at the Semidilute Regime of Poly(vinyl alcohol) Aqueous Solution
E-mail:
초록
어택틱 폴리(비닐 알코올)(PVA) 수용액 시스템의 준희박농도에서의 고분자 사슬의 구조 및 거동을 살펴보기 위하여, 온도 25 ℃에서 광산란 실험을 실시하였다. 산란 벡터 q에서 얻은 산란광의 세기 I(q)는 Onstein- Zernike 식으로 해석이 불가능하여 단순히 I(q)∼q-m을 이용하여 fractal 차원 m을 얻었다. 그 결과 농도 3 wt% 이상에서는 m=2.6±0.3으로 일정하게 유지되었다. 동적 광산란으로 얻은 시간상관함수에는 항상 빠른 거동과 느린 거동의 두 종류가 공존하였으며, 빠른 거동의 협동확산계수는 reptation 이론의 농도의존지수 값(=3/4)과 달리 농도 의존성이 거의 나타나지 않았다. 또한 느린 거동은 거대한 크기의 불균일 영역대의 운동으로 해석되며, 이 거동의 농도지수는 -3.0으로써 매우 강한 농도 의존성을 보여 주었다. 이 불균일 영역대의 형성에는 어택틱 PVA의 -OH기 4개의 메소(meso)가 입체 규칙적으로 배향한 부분이 매우 중요한 역할을 하는 것으로 생각되어진다.
In order to investigate the structure and dynamics of atatic poly(vinyl alcohol)(PVA)/water system, laser light scattering experiment has been done in the semi-dilute concentration regime at 25 ℃. The scattering intensity I(q) can be analyzed with the fractal equation of I(q)∼q-m instead of Onstein-Zernike type equation. The fractal dimensionality m was found to be constant after reaching the plateau value of m=2.6±0.3 above C=3 wt%. The time correlation function of dynamic light scattering has always two different modes such as fast mode and slow one. The cooperative diffusion of fast mode showed concentration independence contrary to the reptation theory's concentration dependent exponent of 3/4. The slow mode can be interpreted as the motion of large scale heterogeneities and its strong concentration dependence is apparent with a large negative exponent of -3.0. It is considered that the stereo-regular arrangement with four successive meso units of -OH plays as a key role in forming such heterogeneity.
- C. A. Finch Editor, Poly(vinyl alcohol):Developments, John Wiley, New York (1992)
- Kim JP, Song DH, Polym. Sci. Technol., 15, 31 (2004)
- Wu W, Shibayama M, Roy S, Kurokawa H, Coyne LD, Nomura S, Stein R, Macromolecules, 23, 2245 (1990)
- Kanaya T, Ohkura M, Kaji K, Furusaka M, Misawa M, Yamaoka H, Wignall GD, Physica B, 180/181, 549 (1992)
- Kanaya T, Ohkura M, Kaji K, Furusaka M, Misawa M, Macromolecules, 27(20), 5609 (1994)
- Kanaya T, Ohkura M, Takeshita H, Kaji K, Furusaka M, Yamaoka H, Wignall GD, Macromolecules, 28(9), 3168 (1995)
- Hara C, Matsuo M, Polymer, 36(3), 603 (1995)
- Kanaya T, Takeshita H, Nishikoji Y, Ohkura M, Nishida K, Kaji K, Supramol. Sci., 5, 215 (1998)
- Choi JH, Ko SW, Kim BC, Blackwell J, Lyoo WS, Macromolecules, 34(9), 2964 (2001)
- Lyoo WS, Kim JH, Choi JH, Kim BC, Blackwell J, Macromolecules, 34(12), 3982 (2001)
- Lyoo WS, Chvalun S, Ghim HD, Kim JP, Blackwell J, Macromolecules, 34(8), 2615 (2001)
- Chen CY, Yu TL, Polymer, 38(9), 2019 (1997)
- Ikkai F, Shibayama M, Nomura S, Han CC, J. Polym. Sci. B: Polym. Phys., 34(5), 939 (1996)
- Ikkai F, Shibayama M, Phys. Rev. Lett., 82, 4946 (1999)
- Fang L, Brown W, Macromolecules, 23, 3284 (1990)
- Kjoniksen AL, Nystrom B, Macromolecules, 29(22), 7116 (1996)
- de Gennes PG, Scaling Concepts in Polymer Physics, Cornell University Press, Ithaca, NY (1979)
- Ngai KL, Adv. Colloid Interface Sci., 64, 1 (1996)
- Provencher SW, Macromol. Chem., 180, 201 (1979)
- Grabowski EF, Morrison ID, "Particle Size Distributions from Analyses of Quasi-Elastic Light Scattering Data", in Measurement of Suspended Particles by Quasi-Elastic Light Scattering, B. E. Dahneke, Editor, John Wiley, NY, p 200 (1983)
- Brown W, Nicolai T, "Dynamic Properties of Polymer Solutions", in Dynamic Light Scattering: The Method and Some Applications, W. Brown, Editor, Clarendon Press, Oxford, p 272 (1993)
- Teraoka I, Polymer Solutions: An Introduction to Physical Properties, Wiley, NY, Chap. 4 (2002)
- Leger L, Hervet H, Rondelez F, Macromolecules, 14, 1732 (1981)
- Wheeler LM, Lodge TP, Macromolecules, 22, 3399 (1989)
- Rotstein NA, Lodge TP, Macromolecules, 25, 1316 (1992)
- Streletzky KA, Phillies GDJ, J. Polym. Sci. B: Polym. Phys., 36(17), 3087 (1998)
- O'Connell R, Hanson H, Phillies GDJ, J. Polym. Sci. B: Polym. Phys., 43(3), 323 (2005)
- Kanatharana J, Sukpisan J, Sirivat A, Wang SQ, Polym. Eng. Sci., 36(24), 2986 (1996)
- Williams G, Watts DC, Trans. Faraday Soc., 66, 80 (1970)
- Tacx JCJF, Schoffeleers HM, Brands AGM, Teuwen L, Polymer, 41(3), 947 (2000)
- Wu C, Ngai T, Polymer, 45, 1739 (2004)
- Stauffer D, Aharony A, Introduction to Percolation Theory, Taylor & Francis, London (1992)
- Hofer M, "Basic Concepts in Static and dynamic light scattering: Application to colloids and polymers", in Neutron, X-ray and Light Scattering: Introduction to an Investigation Tool for Colloidal and Polymeric Systems, P. Lindner, and T. Zemb, Editors, North-Holland, NY (1991)
- Heckmeier M, Mix M, Strobl G, Macromolecules, 30(15), 4454 (1997)
- Wiltzius P, Haller HR, Cannell DS, Schaefer DW, Phys. Rev. Lett., 51, 1183 (1983)
- Stepanek P, Brown W, Macromolecules, 31(6), 1889 (1998)
- Shibatani K, Polym. J., 1, 348 (1970)
- Wilson LM, Griffin AC, Macromolecules, 27(7), 1928 (1994)
- Wilson LM, Macromolecules, 28(1), 325 (1995)
- Park IH, Polym.(Korea), 26(2), 227 (2002)
- Park IH, Yoon JE, Kim YC, Yun L, Lee SC, Macromolecules, 37(16), 6170 (2004)
- Ovenall DW, Macromolecules, 17, 1458 (1984)