화학공학소재연구정보센터
Journal of Physical Chemistry B, Vol.110, No.13, 6655-6660, 2006
Fabrication of ordered catalytically active nanoparticles derived from block copolymer micelle templates for controllable synthesis of single-walled carbon nanotubes
We report the use of the block copolymer micelle approach to produce various transition metal nanoparticles such as iron, cobalt, and nickel with precisely controlled size and spacing. These uniformly sized catalyst nanoparticles derived froth the block copolymer micelle approach have enabled the synthesis of carbon nanotubes (CNTs) with narrow size distribution. Because of the excellent film forming ability of the polymeric material, metal-bearing surface micelles produced from the solution micelles can be distributed uniformly on a surface, resulting in evenly dispersed catalyst nanoparticles. As a result, high quality and uniformly distributed CNTs have been synthesized. Spatially selective growth of CNTs from a lithographically patterned metal-bearing nacelle film has been achieved. The polymer template approach can potentially be extended to synthesize single-metallic and bimetallic catalytically active nanoparticles with uniform size and spacing and is fully compatible with conventional lithographic process. Additionally, catalyst nanoparticles produced from this method do not coalesce at high growth temperature. All these attributes make this approach a promising fabrication pathway for controllable synthesis of CNTs.