Chemical Engineering Science, Vol.61, No.10, 3327-3342, 2006
Improved accuracy and convergence of discretized population balance for aggregation: The cell average technique
A new discretization method for aggregation equations is developed. It is compared to the fixed pivot technique proposed by Kumar and Ramkrishna (1996a. On the solution of population balance equations by discretization-I. A fixed pivot technique. Chemical Engineering Science 51, 1311-1332). The numerical results for aggregation problems by discretized population balances are consistently overpredicting and diverge before the gelling point in the case of a gelling kernel. The present work establishes a new technique which assigns the particles within the cells more precisely. This is achieved by taking first the average of the newborn particles within the cell and then assigning them to the neighboring nodes such that pre-chosen properties are exactly preserved. The new technique preserves all the advantages of the conventional discretized methods and provides a significant improvement in predicting the particle size distribution (PSD). In addition, it is found that the technique is a powerful tool for the computation of gelling problems. The effectiveness of the technique is illustrated by application to several aggregation problems for suitably selected aggregation kernels including physically relevant kernels. (c) 2006 Elsevier Ltd. All rights reserved.