화학공학소재연구정보센터
Journal of Physical Chemistry B, Vol.110, No.4, 1673-1679, 2006
Infrared reflection-absorption spectra of C2H4 and C2H6 on Cu: Effect of surface roughness
Infrared reflection absorption spectroscopy (IRRAS) of the highly symmetric molecules C2H4 and C2H6 adsorbed as mono- and multilayers onto copper films is studied in relation to the type of metal-film roughness. Spectra of C2H4 show Raman lines on cold-deposited Cu films but not on Cu deposited at room temperature. For C2H6, the IR spectra from both types of metal films are similar; the surface infrared selection rule holds and no Raman bands are observed. The Raman lines that appear in the IR spectra already at low exposures are attributed to species adsorbed at special defect sites, identical to the so-called active sites in surface enhanced Raman scattering (SERS). The IR excitation mechanism by transient electron transfer to the adsorbate pi* state can deliver a discrete vibrational band of a Raman-active vibration only under certain circumstances, for example, for adsorbates at the "SERS-active sites". C2H6 at these sites cannot deliver Raman bands in IRRAS, because it has no pi* state. We also discuss IRRAS measurements on Cu(111) and Cu(110) single crystals, where Raman bands of C2H4 have been observed.