Journal of Physical Chemistry A, Vol.110, No.4, 1518-1523, 2006
Molecular dynamics simulations of the melting of aluminum nanoparticles
Molecular dynamics simulations are performed to determine the melting points of aluminum nanoparticles of 55-1000 atoms with the Streitz-Mintmire [Phys. Rev. B 1994, 50, 11996] variable-charge electrostatic plus potential. The melting of the nanoparticles is characterized by studying the temperature dependence of the potential energy and Lindemann index. Nanoparticles with less than 850 atoms show bistability between the solid and liquid phases over temperature ranges below the point of complete melting. The potential energy of a nanoparticle in the bistable region alternates between values corresponding to the solid and liquid phases. This bistability is characteristic of dynamic coexistence melting. At higher temperatures, only the liquid state is stable. Nanoparticles with more than 850 atoms undergo a sharp solid-liquid-phase transition characteristic of the bulk solid phase. The variation of the melting point with the effective nanoparticle radius is also determined.