화학공학소재연구정보센터
Macromolecular Research, Vol.14, No.2, 209-213, April, 2006
Ring Oxpening Polymerization of D,L-Lactide on Magnetite Nanoparticles
E-mail:
The ring-opening polymerization of D,L-lactide initiated by tin(II) 2-ethylhexanoate (Sn(Oct)2) on thesurface-initiated magnetite (Fe3O4) nanoparticles was performed at 130oC. The effects of the polymer molar massand concentration on the amount of surface polymer were investigated. The number average molecular weights, Mn,obtained by both NMR and GPC methods fit well within the accuracy of the applied methods and ranged from 1,100to 4,040g·mol-1. A surface functionalization density of up to 625 initiation sites per particle was obtained. The composition of various core-shell particles was determined by TGA, with results indicating magnetite (Fe3O4) contents,μm, between 17 and 59wt%. Under the influence of a magnetic field, the heating generated by superparamagneticcore-shell particles suspended in toluene presented guidelines for an optimization of magnetic particle systems withrespect to an application for hyperthermia.
  1. Dormann JL, Fiorani D, Tronc E, Adv. Chem. Phys., 98, 283 (1997)
  2. Brown WF, Phys. Rev., 130, 1677 (1963) 
  3. Schwertmann U, Cornell RM, Iron oxides in the laboratory: preparation and characterization, Weinheim, Cambridge, VCH (1991)
  4. Wang YX, Hussain SM, Krestin GP, European radiology, 11, 2319 (2001) 
  5. Babincova M, Cicmanec P, Babinec P, Altanerova V, Z Naturforsch (Sect C), 56, 909 (2001)
  6. Berkovsky BM, Bashtovoy V, Magnetic fluids and applications handbook, Begell House, Inc., New York, Wallingford, UK (1996)
  7. Dailey JP, Phillipsb JP, Lib C, Riffleb JS, J. Magn. Magn. Mater., 194, 140 (1999) 
  8. Babes L, Denizot B, Tanguy G, Le Jeune JJ, Jallet P, J. Colloid Interface Sci., 212(2), 474 (1999) 
  9. Bonnemain B, J. Drug Target., 6, 167 (1998)
  10. Ramachandran N, Mazuruk K, Ann. NY Acad. Sci., 1027, 99 (2004) 
  11. Carrot G, Scholz SM, Plummer CJG, Hilborn JG, Chem. Mater., 11, 3571 (1999) 
  12. Zhang Y, Kohler N, Zhang MQ, Biomaterials, 23, 1553 (2002) 
  13. Butterworth MD, Illum L, Davis SS, Colloids Surf. A: Physicochem. Eng. Asp., 179, 93 (2001) 
  14. Lahann J, Langer R, Macromol. Rapid Commun., 22, 968 (2001) 
  15. Choi IS, Langer R, Macromolecules, 34(16), 5361 (2001) 
  16. Joubert M, Delaite C, Bourgeat-Lami E, Dumas P, J. Polym. Sci. A: Polym. Chem., 42(8), 1976 (2004) 
  17. Yoon KR, Koh YJ, Choi IS, Macromol. Rapid Commun., 24, 207 (2003) 
  18. Dubois P, Krishnan M, Narayan R, Polymer, 40(11), 3091 (1999) 
  19. Moller M, Nederberg F, Lim LS, Kange R, Hawker CJ, Hedrick JL, Gu YD, Shah R, Abbott NL, J. Polym. Sci. A: Polym. Chem., 39(20), 3529 (2001) 
  20. Carrot G, Rutot-Houze D, Pottier A, Degee P, Hilborn J, Dubois P, Macromolecules, 35(22), 8400 (2002) 
  21. Massart R, IEEE Trans. Magn., 17, 1247 (1981) 
  22. Ishihara K, Kubota M, Yamamoto H, Synlett, 3, 265 (1996) 
  23. Moller M, Kange R, Hedrick JL, J. Polym. Sci. A: Polym. Chem., 38(11), 2067 (2000) 
  24. Ryner M, Stridsberg K, Albertsson AC, von Schenck H, Svensson M, Macromolecules, 34(12), 3877 (2001) 
  25. Kim SH, Han YK, Kim YH, Hong SI, Die Makromolekulare Chemie, 193, 1623 (2003) 
  26. Yoon KR, Lee YW, Lee JK, Choi IS, Macromol. Rapid Commun., 25, 1510 (2004) 
  27. Fleet ME, Acta Crystallogr. Sect. B-Struct. Sci., 37, 917 (1981)