Polymer(Korea), Vol.30, No.2, 146-151, March, 2006
선형 및 분지 구조의 폴리(에틸렌 글리콜)/폴리카프로락톤 공중합체의 합성 및 특성 검토
Synthesis and Characterization of Linear and Branched Copolymers of Poly(ethylene glycol) and Poly(ε-caprolactone)
E-mail:
초록
폴리(에틸렌 글리콜)(PEG)과 생분해성 폴리에스터 그룹의 폴리카프로락톤(PCL)으로 이루어진 선형 및 분지 구조의 공중합체를 합성하고 분자 구조에 따른 다양한 특성을 비교하였다. 선형 및 분지 구조의 1-arm-PEG-PCL, 2-arm-PEG-PCL, 4-arm-PEG-PCL 및 8-arm-PEG-PCL 공중합체는 단량체 활성화제로서 HClㆍEt2O의 존재 하에 상온에서 카프로락톤( ε-CL) 의 개환중합에 의해 합성하였다. 합성된 선형 및 분지 구조의 공중합체는 1H-NMR, GPC, DSC 및 XRD의 측정을 통해 특성을 분석하였다. 그 결과 공중합체의 가지 수에 따라 열적 특성 및 결정성이 다르게 나타나는 것을 확인하였다. 그리고 각 공중합체의 수용액상에서의 미셀 특성은 1H-NMR, 광산란기, 원자 현미경 및 형광 측정기를 이용하여 확인하였다. 공중합체의 가지 수가 증가할수록 임계 미셀 농도 값과 미셀의 직경이 증가하는 것을 알 수 있었다. 또한 원자 현미경을 통해 관찰된 미셀의 형태는 선형 및 분지 구조의 공중합체 모두 구형으로 존재함을 확인할 수 있었다. 따라서 본 연구에서는 분자 설계를 통해 선형 및 분지 구조의 공중합체를 합성하여 각 공중합체의 분자 구조에 따른 다양한 특성을 비교하였으며 수용액상에서 형성된 미셀의 거동을 검토하여 소수성 약물 전달체로서의 가능성을 확인하였다.
Linear and branched copolymers consisting of poly(ethylene glycol) (PEG) and poly( ε-caprolactone) (PCL) were prepared to compare the characterization of star-shaped copolymers with various molecular architecture. Linear and branched PEG-PCL (1-arm, 2-arm, 4-arm, and 8-arm) copolymers were synthesized by the ring-opening polymerization of ε-caprolactone in the presence of HClㆍEt2O as a monomer activator at room temperature. The synthesized copolymers were characterized with 1H-NMR, GPC, DSC, and XRD. As a result of the DSC and XRD, each copolymers showed different thermal properties and crystallinity according to the number of arms. The micellar characterization of linear and branched copolymers in an aqueous phase was carried out by using NMR, dynamic light scattering, AFM, and fluorescence techniques. The critical micelle concentration (CMC) and diameters of micelles depended on the number of arms. Most micelles exhibited a spherical shape in AFM. In this study, we characterized star-shaped PEG-PCL copolymers and investigated their molecular architecture effect on the various properties. Furthermore, we confirmed that the micelles formed with linear and branched PEG-PCL copolymers have possibility as a potential hydrophobic drug delivery vehicle.
- Kharchenko SB, Kannan RM, Macromolecules, 36(2), 407 (2003)
- Furukawa T, Ishizu K, Macromolecules, 36(2), 434 (2003)
- Ueda J, Kamigaito M, Sawamoto M, Macromolecules, 31(20), 6762 (1998)
- Angot S, Murthy KS, Taton D, Gnanou Y, Macromolecules, 31(21), 7218 (1998)
- Hadjichristidis N, Pitsikalis M, Pispas S, Iatrou H, Chem. Rev., 101(12), 3747 (2001)
- Kennedy JP, Jacob S, Accounts Chem. Res., 31, 835 (1998)
- Zhang X, Xia JH, Matyjaszewski K, Macromolecules, 33(7), 2340 (2000)
- Xia JH, Zhang X, Matyjaszewski K, Macromolecules, 32(13), 4482 (1999)
- Baek KY, Kamigaito M, Sawamoto M, Macromolecules, 34(2), 215 (2001)
- Bosman AW, Heumann A, Klaerner G, Benoit D, Frechet JMJ, Hawker CJ, J. Am. Ceram. Soc., 123, 6461 (2001)
- Bosman AW, Vestberg R, Heumann A, Frechet JMJ, Hawker CJ, J. Am. Chem. Soc., 125(3), 715 (2003)
- Lanza RP, Langer R, Chick WL, Principles of Tissue Engineering, R.G.Landes/Academic Press, Austin, TX (1997)
- Ratner BD, Hoffman AS, Schoen FJ, Lemons JE, Biomaterials Science : An Introduction to Material in Medicine, Academic Press, San Diego, CA (2000)
- Peppas NA, Langer R, Science, 263(5154), 1715 (1994)
- Christenson L, Mikos AG, Gibbons DF, Picciolo GL, Tissue Eng., 3, 71 (1997)
- Hernandez-Lopez JL, Bauer RE, Chang WS, Glasser G, Greble-Koehler D, Klapper M, Kreiter M, Leclaire J, Majoral JP, Mittler S, Mullen K, Vasilev K, Weil T, Wu J, Zhu T, Knoll W, Mater. Sci. Eng. R-Rep., C23, 267 (2003)
- Cloinger MJ, Curr. Opin. Chem. Biol., 6, 742 (2002)
- van Heerbeek R, Kamer PCJ, van Leeuwen PWNM, Reek JNH, Chem. Rev., 102(10), 3717 (2002)
- Carnahan MA, Middleton C, Kim J, Kim T, Grinstaff MW, J. Am. Chem. Soc., 124(19), 5291 (2002)
- Huh KM, Bae YH, Polymer, 40(22), 6147 (1999)
- Qian H, Bei J, Wang S, Polym. Degrad. Stabil., 68, 423 (2000)
- Kim JK, Park DJ, Lee MS, Ihn KJ, Polymer, 42(17), 7429 (2001)
- Tsuji H, Ikarashi K, Biomaterials, 25, 5449 (2004)
- Chae GS, Lee JS, Jeong JK, Cho SH, Lee HB, Khang G, Polym.(Korea), 28(4), 335 (2004)
- Khang G, Lee JH, Lee JW, Cho JC, Lee HB, Korea Polym. J., 8(2), 80 (2000)
- Seo KS, Chon SK, Kim MS, Cho SH, Lee HB, Khang G, Polym.(Korea), 28(3), 232 (2004)
- Du JZ, Chen YM, Macromolecules, 37(10), 3588 (2004)
- Choi YR, Bae YH, Kim SW, Macromolecules, 31(25), 8766 (1998)
- Bakker-Woudenberg I, Int. J. Antimicrob. Agents., 19, 299 (2002)
- Torchilin VP, Adv. Drug Deliv. Rev., 54, 235 (2002)
- Hoffman AS, Adv. Drug Deliv. Rev., 54, 3 (2002)
- Merrill EW, Salzman EW, J. Am. Soc. Artif. Intern. Organs., 6, 60 (1983)
- Zhang L, Chu CC, Loh IH, J. Biomed. Mater. Res., 27, 1425 (1993)
- Strock M, Orend KH, Schmitzrixen T, Vasc. Surg., 27, 413 (1993)
- Park SY, Han DK, Kim SC, Macromolecules, 34(26), 8821 (2001)
- Forster S, Kramer E, Macromolecules, 32(8), 2783 (1999)
- Hancock LF, Fagan SM, Ziolo MS, Biomaterials, 21, 725 (2000)
- Feng XS, Pan CY, Macromolecules, 35(13), 4888 (2002)
- Ge H, Hu Y, Jiang X, Cheng D, Yuan Y, Bi H, Yang C, J. Pharm. Sci., 91, 1463 (2002)
- Huang MH, Li S, Hutmacher DW, Schantz JT, Vacanti CA, Braud C, Vert M, J. Biomed. Mater. Res. Part A., 69, 417 (2004)
- Kang HS, Shin MS, Kim JD, Yang JW, Polym. Bull., 45(1), 39 (2000)
- Kim MS, Hyun H, Cho YH, Seo KS, Jang WY, Kim SK, Khang G, Lee HB, Polym. Bull., 55(3), 149 (2005)
- Kim MS, Seo KS, Khang G, Lee HB, Macromol. Rapid Commun., 26, 643 (2005)
- Kim MS, Seo KS, Khang G, Cho SH, Lee HB, J. Polym. Sci. A: Polym. Chem., 42(22), 5784 (2004)