Polymer(Korea), Vol.30, No.2, 129-134, March, 2006
무기계 나노분말 충전 폴리우레탄 나노복합재료의 제조 및 물성
Preparation of Urethane Nanocomposites with Inorganic Nano Fillers and Their Physical Properties
E-mail:
초록
Na+-Montmorillonite(MMT), 실리카, 탄산칼슘 및 MMT를 표면 개질한 무기 나노입자를 이용한 나노복합재료를 제조하고 이들의 열적 특성을 고찰하였다. 나노복합재료의 연속상 폴리우레탄의 분자량은 20000∼28000이고 충전비에 큰 영향이 없었으며, 이들의 분자량 분포는 1.5∼2.0로 비교적 일정하였다. 나노복합재료의 층간거리( d-spacing)는 순수한 충전제의 층간거리보다 모두 증가되었다. 한편 초기 열분해 온도는 폴리우레탄 매트릭스보다 모두 높게 나타났으며, 나노복합재료의 초기 열분해 온도는 250∼280 ℃이었다. 또한 열중량 감소 폭도 나노복합재료의 경우가 낮았으며, 완전 열분해 온도는 약 50 ℃ 높게 나타났다. 인장강도는 탄산칼슘 충전 복합재료가 가장 높았으며, 신율은 MMT 충전 나노 복합재료가 247%로 가장 크게 나타났다. 또한 충전제의 함량이 증가할수록 인장강도는 증가하였으며 실리카 충전 복합 재료의 인장강도가 가장 낮게 나타났고, 탄산칼슘 충전 복합재료의 인장강도가 가장 높게 나타났다.
Nanocomposites of polyurethane were prepared from inorganic nano particles, Na+-montmorillonite (MMT), silica, CaCO3, and surface modified MMT and their properties were investigated. It was shown that the molecular weight and polydispersity of nanocomposites of polyurethane were 20000 to 28000 and 1.0 to 2.0, respectively. d-Spacing for nanocomposites of MMT were increased than that of pure MMT. Initial degradation temperature of nanocomposites were 250 to 280 ℃. And also, the range of weight loss for nanocomposites were decreased and the end of thermal degradation was observed at higher temperatures about 50 ℃. The elongation at break for CaCO3 filled nanocomposites were the highest among the nanocomposites used in this study. studied. It was found that the tensile strength increased with increasing the filler contents while the silica nanocomposite exhibited the lowest increase and the CaCO3 nanocomposite the highest.
- Saxena PK, Raut KG, Srinivasan SR, Sivaram S, Rawat RS, Jain PK, Constr. Build. Mater., 5, 208 (1991)
- Chew MYL, Zhou X, Tay YM, Polym. Test, 20, 87 (2001)
- Tang YW, Santerre JP, Labow RS, Taylor DG, J. Appl. Polym. Sci., 62(8), 1133 (1996)
- Tonelli C, Trombetta T, Scicchitano M, Castiglioni G, J. Appl. Polym. Sci., 57(9), 1031 (1995)
- Boxhammer J, Polym. Test, 20, 719 (2001)
- Noh MH, Lee DC, J. Appl. Polym. Sci., 74(12), 2811 (1999)
- Krishnamoorti R, Vaia RA, ACS Symp. Ser., 804, 7 (2002)
- Pandya MV, Deshpande DD, Hundiwale DG, J. Appl. Polym. Sci., 32, 4959 (1986)
- Aranda P, Ruiz-Hitzky E, Chem. Mater., 4, 1395 (1992)
- Maiti P, Batt CA, Giannelis EP, Polym. Mater. Sci. Eng., 88, 58 (2003)
- Alexandre M, Dubois D, Mater. Sci. Eng., 28, 1 (2000)
- Chen TK, Tien YI, Wei KH, Polymer, 41(4), 1345 (2000)
- Lan PN, Corneillie S, Schaacht E, Davies M, Shard A, Biomaterials, 17, 2273 (1996)
- Boening HV, Miller CB, Shottafter JE, J. Appl. Polym. Sci., 9, 523 (1965)
- Reegen SL, J. Appl. Polym. Sci., 10, 1247 (1966)
- Jeong HM, Kim BK, Choi YJ, Polymer, 41(5), 1849 (2000)
- David DJ, Staley HB, Analytical Chemistry of Polyurethand, Wiley-Interscience, New York (1969)
- Hernandez-Padron G, Lima RM, Nava R, Garcia-Garduno MV, Castano VM, Adv. Polym. Technol., 21(2), 116 (2002)
- Jeong HM, Kim BK, Choi YJ, Polymer, 41(5), 1849 (2000)
- An YU, Chang JH, Park YH, Park JM, Polym.(Korea), 26(3), 381 (2002)
- Gilman JW, Jackson CL, Morgan AB, Harris RH, Chem. Mater., 12, 1866 (2002)
- Kim JP, Lyu SG, Bae KS, Sur GS, Polym.(Korea), 25(2), 263 (2001)