Korean Chemical Engineering Research, Vol.44, No.1, 16-22, February, 2006
생물학적 수소생산 공정
Biological Hydrogen Production Processes
E-mail:
초록
생물학적 수소생산 공정은 다른 열화학적 공정이나 전기화학적 공정에 비하여 환경친화적이며 에너지를 덜 소모하는 공정이다. 생물학적 수소생산 공정은 크게 두 가지로 구별할 수 있는데, 광합성에 의한 수소생산과 혐기발효에 의한 수소생산이 그것이다. 광합성에 의한 수소생산 공정은 주로 물로부터 수소를 생산하고 동시에 공기 중의 이산화탄소도 저감하는 특징을 가지고 있으며, 혐기발효에 의한 수소생산 공정은 유기 탄소원을 섭취하는 박테리아에 의한 발효를 통해 이루어지는 공정이다. 본 논문에서는 생물학적 수소생산 공정에 대한 그간의 연구들에 대하여 살펴 보았다.
Biological hydrogen production processes are more environment-friendly and less energy intensive than thermochemical and electrochemical processes. The biological process can be divided into two categories: photosynthetic hydrogen production and hydrogen production by dark fermentation. Photosynthetic process produces hydrogen mainly from water and reduces CO2 simultaneously. Dark fermentation is a dark and anaerobic process that produces hydrogen by fermentative bacteria from organic carbon. The article presents a survey of biological hydrogen production processes.
- Suzuki Y, Int. J. Hydrog. Energy, 7(3), 227 (1982)
- Bockris JOM, Int. J. Hydrog. Energy, 6(3), 223 (1981)
- Vijayaraghavan K, Soom MAM, "Trends in Biological Hydrogen Production-a Review", Int. J. Hydrogen Energy, in press, available online at www.sciencedirect.com (2004)
- Lichtl RR, Bazin MJ, Hall DO, Appl. Microbiol. Biotechnol., 47(6), 701 (1997)
- Hansel A, Lindblad P, Appl. Microbiol. Biotechnol., 50(2), 153 (1998)
- Matsunaga T, Hatano T, Yamada A, Matsumoto M, Biotechnol. Bioeng., 68(6), 647 (2000)
- Oh YK, Seol EH, Lee EY, Park SH, Int. J. Hydrog. Energy, 27(11-12), 1373 (2002)
- Fumiaki T, Chang JD, Mizukami N, Tatsuo ST, Katsushige H, J. Ferment. Bioeng., 82(1), 80-83 (1996)
- Yokoi H, Tokushige T, Hirose J, Hayashi S, Takahashi Y, J. Ferment. Bioeng., 83(5), 481 (1997)
- Das D, Veziroglu TN, Int. J. Hydrog. Energy, 26(1), 13 (2001)
- Vignais MV, Billoud B, Meyer J, Fems Microbiol. Rev., 25(4), 455 (2001)
- Adams MW, Mortenson LE, Chen JS, Biochim. Biophys. Acta., 594(2-3), 105 (1980)
- Appel J, Schulz R, J. Photochem. Photobiol. B-Biol., 47(1), 1 (1998)
- Schulz R, J. Mar. Biotechnol., 4, 16 (1996)
- Boichenko VA, Homann P, Photosynthetica, 30, 527 (1994)
- Gorman J, "Hydrogen: the Next Generation", Science News (2002)
- Melis A, Zhang L, Forestier M, Ghirardi ML, Seibert M, Plant Physiol., 122(1), 127 (2000)
- Hallenbeck PC, Benemann JR, Int. J. Hydrog. Energy, 27(11-12), 1185 (2002)
- Laurinavichene TV, Tolstygina IV, Galiulina RR, Ghirardi ML, Seibert M, Tsygankov AA, Int. J. Hydrog. Energy, 27(11-12), 1245 (2002)
- Tsygankova A, Kosourova S, Seibertb M, Ghirardi ML, Int. J. Hydrog. Energy, 27(11-12), 1239 (2002)
- Flynn T, Ghirardi ML, Seibert M, Int. J. Hydrog. Energy, 27(11-12), 1421 (2002)
- Janssen M, Hoekema S, "Biological Hydrogen Production, 2003", available from: www.ftns.wau.nl/prock/Research/Rene/Photobacteria.htm, accessed 7 April (2004)
- Lindblad P, Christensson K, Lindberg P, Fedorov A, Pinto F, Tsygankov A, Int. J. Hydrog. Energy, 27(11-12), 1271 (2002)
- Masukawa H, Mochimaru M, Sakurai H, Appl. Microbiol. Biotechnol., 58(5), 618 (2002)
- Troshina O, Serebryakova L, Sheremetieva M, Lindblad P, Int. J. Hydrog. Energy, 27(11-12), 1283 (2002)
- Yoon JH, Sim SJ, Kim MS, Park TH, Int. J. Hydrog. Energy, 27(11-12), 1265 (2002)
- Koku H, Eroglu I, Gunduz U, Yucel M, Turker L, Int. J. Hydrog. Energy, 28(4), 381 (2003)
- Ko IB, Noike T, Int. J. Hydrog. Energy, 27(11-12), 1297 (2002)
- Lee CM, Chen PC, Wang CC, Tung YC, Int. J. Hydrog. Energy, 27(11-12), 1309 (2002)
- Maness PC, Weaver PF, Int. J. Hydrog. Energy, 27(11-12), 1407 (2002)
- Singh A, Pandey KD, Dubey RS, Int. J. Hydrog. Energy, 24(8), 693 (1999)
- Kondo T, Arakawa M, Wakayama T, Miyake J, Int. J. Hydrog. Energy, 27(11-12), 1303 (2002)
- Kirk RE, Othmer DF, Grayson M, Eckroth D, "Concise Encyclopedia of Chemical Technology XIII", NewYork, Wiley-Interscience, 838-893 (1985)
- Hart D, "Hydrogen Power: the Commercial Future of the Ultimate Fuel", London, Financial Times Energy Publishing (1997)
- Tanisho S, Kuromoto M, Kadokura N, Int. J. Hydrog. Energy, 23(7), 559 (1998)
- van Niel EWJ, Claassen PAM, Stams AJM, Biotechnol. Bioeng., 81(3), 255 (2003)
- Heyndrickx M, Vos PD, Ley JD, J. Appl. Bacteriol., 70, 52 (1991)
- Chen WM, Tseng ZJ, Lee KS, Chang JS, "Fermentative hydrogen production with clostridium butylicum cgs5 isolated From Anaerobic Sewage Sludge", Int. J. Hydrogen Energy, in press, available online at www.sciencediret.com (2004)
- Saint-Amans S, Girbal L, Andrade J, Ahrens K, Soucaille P, J. Bacteriol., 183(5), 1748 (2001)
- Christophe C, Nevenka A, Jean-Paul S, Paul P, Int. J. Hydrog. Energy, 29(14), 1479 (2004)
- Rachman MA, Furutani Y, Nakashimada Y, Kakizono T, Nishio N, J. Ferment. Bioeng., 83(4), 358 (1997)
- Yokoi H, Ohkawara T, Hirose J, Hayashi S, Takasaki Y, J. Ferment. Bioeng., 80(6), 571 (1995)
- Kumar N, Das D, Process Biochem., 35(6), 589 (2000)
- Rachman MA, Furutani Y, Nakashimada Y, Kakizono T, Nishio N, J. Ferment. Bioeng., 83(4), 358 (1997)
- Kumar N, Das D, Enzyme Microb. Technol., 29(4-5), 280 (2001)
- Palazzi E, Fabiano B, Perego P, Bioprocess Eng., 22, 205 (2000)
- Godfroy A, Raven NDH, Sharp RJ, Fems Microbiol. Lett, 186(1), 127 (2000)
- Schroder C, Selig M, Schonheit P, Arch. Microbiol., 161(6), 460 (1994)
- Fiala G, Stetter KO, Arch. Microbiol., 145(1), 56 (1986)
- Dietrich G, Weiss N, Winter J, Syst. Appl. Microbiol., 10, 174 (1988)
- Soutschek B, Winter J, Schindler F, Kandler O, Syst. Appl. Microbiol., 5, 377 (1984)
- Reith JH, Wijffels RH, Barten H, (Ed.), Bio-Methane & bio-Hydrogen: Status and Perspectives of Biological Methane and Hydrogen Production, Dutch Biological Hydrogen Foundation, The Netherlands, 103-123 (2003)
- Van Niel EWJ, Budde MAW, De Haas GG, Van der Wal FJ, Claassen PAM, Stams AJM, Int. J. Hydrog. Energy, 27(11-12), 1391 (2002)
- Kanai T, Fukui T, Atomi H, Imanaka T, "Continuous Hydrogen Production by the Hyperthermophilic Archaeon, Thermococcus kodakaraensis KODI", 15th WHEC, June, Japan (2004)