화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.23, No.1, 63-70, January, 2006
Sequential competitive sorption and desorption of chlorophenols in organoclay
E-mail:
Single- and bi-solute sorption and desorption of 2-chlorophenol (2-CP) and 2,4,5-trichlorophenol (2,4,5-TCP) in montmorillonite modified with hexadecyltrimethyl-ammonium (HDTMA) were investigated by sequential sorption and desorption. Effect of pH on the sequential sorption and desorption was investigated. As expected by the magnitude of octanol : water partition coefficient (Kow), both sorption and desorption affinity of 2,4,5-TCP was higher than that of 2-CP at pH 4.85 and 9.15. For both chlorophenols, the protonated speciation (at pH 4.85) exhibited a higher affinity in both sorption and desorption than the predominant deprotonated speciation (about 80% and 99% of 2-chlorophenolate and 2,4,5-trichlophenolate anions at pH 9.15, respectively). Desorption of chlorinated phenols was strongly dependent on the current pH regardless of their speciation in the previous sorption stage. Freundlich model was used to analyze the single-solute sorption and desorption data. No appreciable desorption-resistant (or non-desorbing) fraction was observed in organoclays after several sequential desorptions. This indicates that sorption of phenols in organoclay mainly occurs via partitioning into the core of the pseudo-organic medium, thereby causing desorption nearly reversible. In bisolute competitive systems, sorption (or desorption) affinity of both chlorophenols was reduced compared to that in its single-solute system due to the competition between the solutes. The ideal adsorbed solution theory (IAST) coupled with the single-solute Freundlich model was positively correlated with the bisolute sequential competitive sorption and desorption equilibria.
  1. Allen-King RM, Grathwohl P, Ball WP, Adv. Water Resour., 25, 985 (2002) 
  2. Bhandari A, Novak JT, Berry DF, Environ. Sci. Technol., 30, 2305 (1996) 
  3. Bhandari A, Novak JT, Burgos WD, Berry DF, J. Environ. Eng., 123, 506 (1997)
  4. Boyd SA, Shaobai S, Lee JF, Mortland MM, Clay Clay Min., 36, 125 (1988)
  5. Burris DR, Antworth CP, J. Contam. Hydrol., 10, 325 (1992) 
  6. Chiou CT, Kile DE, Rutherford DW, Sheng G, Boyd SA, Environ. Sci. Technol., 34, 1254 (2000) 
  7. Chiou CT, Kile DE, Environ. Sci. Technol., 32, 338 (1998) 
  8. Crocker FH, Guerin WF, Boyd SA, Environ. Sci. Technol., 29, 2953 (1995)
  9. Danis TG, Albanis TA, Toxicol. Environ. Chem., 62, 65 (1997)
  10. Dentel SK, Bottero JY, Khatib K, Demougeot H, Duguet JP, Anselme C, Water Res., 29, 1273 (1995) 
  11. DiVincenzo JP, Sparks DL, Arch. Environ. Contam. Toxicol., 40, 445 (2001) 
  12. Fytianos K, Voudrias E, Kokkalis E, Chemosphere, 40, 3 (2000) 
  13. Huh JK, Song DI, Jeon YW, Sep. Sci. Technol., 34(4), 571 (1999) 
  14. Huh JK, Song DI, Jeon YW, Sep. Sci. Technol., 35, 243 (2000) 
  15. Kan AT, Fu G, Hunter MA, Tomson MB, Environ. Sci. Technol., 31, 2176 (1997) 
  16. Kan AT, Fu G, Hunter M, Chen W, Ward CH, Tomson MB, Environ. Sci. Technol., 32, 892 (1998) 
  17. Kim CG, Clarke WP, Lockington D, Korean J. Chem. Eng., 16(2), 215 (1999)
  18. Kim DG, Song DK, Jeon YW, Sep. Sci. Technol., 36(14), 3159 (2001) 
  19. Kim JH, Shin WS, Kim YH, Choi SJ, Jo WK, Song DI, Korean J. Chem. Eng., 22(6), 857 (2005)
  20. Kim JH, Shin WS, Kim YH, Choi SJ, Jeon YW, Song DI, Water Sci. Technol., 47, 59 (2003)
  21. Kim YS, Song DI, Jeon JW, Choi SJ, Sep. Sci. Technol., 31(20), 2815 (1996)
  22. Kleibaum DG, Kupper LL, Applied regression analysis and other multivariable methods, Duxbury Press, North Scituate, Mass., pp. 71-77 (1978)
  23. Kleineidam S, Schuth C, Grathwohl P, Environ. Sci. Technol., 36, 4689 (2002) 
  24. Kwon SC, Song DI, Jeon YW, Sep. Sci. Technol., 33(13), 1981 (1998)
  25. Lagas P, Chemosphere, 17, 205 (1988) 
  26. Lee JH, Song DI, Jeon YW, Sep. Sci. Technol., 32(12), 1975 (1997)
  27. McGroddy S, Farrington JW, Gschwend P, Environ. Sci. Technol., 30, 172 (1996) 
  28. Nye JV, Guerin WF, Boyd SA, Environ. Sci. Technol., 28, 944 (1994) 
  29. Palmo M, Bhandari A, Environ. Sci. Technol., 39, 2143 (2000)
  30. Radke CJ, Prausnitz JM, AIChE J., 18, 761 (1972) 
  31. Shin WS, Song DI, Geosciences J., 9, 249 (2005)
  32. Song DI, Shin WS, Environ. Sci. Technol., 39, 1138 (2005) 
  33. Stapleton MG, Sparks DL, Dentel SK, Environ. Sci. Technol., 28, 2330 (1994)
  34. Weber Jr WJ, Huang W, Environ. Sci. Technol., 30, 881 (1996) 
  35. Witthuhn B, Pernyeszi Klauth P, Vereecken H, Klumpp E, Colloids Surf. A: Physicochem. Eng. Asp., 265, 81 (2005) 
  36. Xing B, Pignatello JJ, Gigliotti B, Environ. Sci. Technol., 30, 2432 (1996) 
  37. Xu SH, Boyd SA, Langmuir, 11(7), 2508 (1995) 
  38. Yang WC, Shim WG, Lee JW, Moon H, Korean J. Chem. Eng., 20(5), 922 (2003)
  39. Yen CY, Singer PC, J. Environ. Eng., 110, 976 (1984)
  40. You CN, Liu JC, Water Sci. Technol., 33, 263 (1996)