Macromolecules, Vol.38, No.25, 10523-10531, 2005
Hydrogen-bonded multilayers of thermoresponsive polymers
Neutral temperature responsive polymers, such as poly(N-vinylcaprolactam) (PVCL) and poly(vinyl methyl ether) (PVME), were included in ultrathin films using layer-by-layer alternating adsorption of these polymers with poly(methacrylic acid) (PMAA) at low pH. The amounts of polymers adsorbed and ionization of carboxylic groups within a film were quantified using in situ FTIR-ATR (Fourier transform infrared spectroscopy by attenuated total reflection). The strength of interlayer adhesion provided through hydrogen-bonding interactions was inferred from the critical pH value (pH(CR)) and critical ionization (alpha(CR)) for multilayer decomposition which were pH(CR) 6.2, alpha(CR) 2% and pHCR 6.95. alpha(CR) 30% for PMAA/PVME and PMAA/PVCL films, respectively. When deposited onto porous support membranes, PMAA/PVME and PMAA/PVCL multilayers exhibited temperature-responsive changes in dye permeability. The transition occurred in a wide temperature range from 25 to 35 degrees C, reflecting lower cooperativity of the phase separation of PVME and PVCL chains included within the film. Finally, PMAA/PVME and PMAA/PVCL self-assembly was performed onto particulate substrates, producing capsules which hold promise as temperature-responsive containers for controlled delivery applications.