화학공학소재연구정보센터
Journal of the American Chemical Society, Vol.127, No.49, 17286-17295, 2005
Site-specific fluorescent labeling of RNA molecules by specific transcription using unnatural base pairs
Site-specific fluorescent labeling of RNA molecules was achieved by specific transcription using an unnatural base pair system. The unnatural base pairs between 2-amino-6-(2-thienyl)purine (s) and 2-oxo-(1H)pyridine (y), and 2-amino-6-(2-thiazolyl)purine (v) and y function in transcription, and the substrates of y and 5-modified y bases can be site-specifically incorporated into RNA, opposite s or v in DNA templates, by T7 RNA polymerase. Ribonucleoside 5'-triphosphates of 5-fluorophore-linked y bases were chemically synthesized from the nucleoside of y. These fluorescent substrates were site-specifically incorporated into RNA by transcription mediated by the s-y and v-y pairs. By using this fluorescent labeling method, specific positions of Raf-binding and theophylline-binding RNA aptamers were fluorescently labeled, and the specific binding to their target molecules was detected by their fluorescent intensities. This site-specific labeling method using an unnatural base pair system will be useful for analyzing conformational changes of RNA molecules and for detecting interactions between RNA and its binding species.