Journal of the American Chemical Society, Vol.127, No.44, 15481-15490, 2005
Perforated layer structures in liquid crystalline rod-coil block copolymers
We report a novel observation of the tetragonal perforated layer structures in a series of rod-coil liquid crystalline block copolymers (BCPs), poly(styrene-block-(2,5-bis[4-methoxyphenyl]oxycarbonyl)styrene) (PS-b-PMPCS). PMPCS forms rigid rods while PS forms the coil block. Differential scanning calorimetry (DSC), polarized light microscopy (PLM), small-angle X-ray scattering (SAXS), wide-angle X-ray diffraction (WAXD), and transmission electron microscopy (TEM) techniques were used to investigate these rod-coil molecules, and a perforated layer structure was observed at F-PMPCS; 0.37 in relatively low molecular weight (M-w) samples and similar to 0.5 in high M-w PS-b-PMPCS. This substantial phase boundary shift was attributed to the rod-coil nature of the BCP. The perforation obeys a tetragonal instead of hexagonal symmetry. The "onset" of perforation was also observed in real space in sample PS272-b-PMPCS93 (f(PMPCS) approximate to 0.52), in which few PS chains punctuate PMPCS layers. A slight increase in f(PS), by blending with PS homopolymer, led to a dramatic change in the BCP morphology, and uniform tetragonal perforations were observed at f(PMPCS) approximate to 0.48.