Journal of Physical Chemistry B, Vol.109, No.45, 21350-21356, 2005
Fragility of glass-forming polymer liquids
The fragility of polymeric glass-forming liquids is calculated as a function of molecular structural parameters from a generalized entropy theory of polymer glass-formation that combines the Adam-Gibbs (AG) model for the rate of structural relaxation with the lattice cluster theory (LCT) for polymer melt thermodynamics. Our generalized entropy theory predicts the existence of distinct high and low temperature regimes of glass-formation that are separated by a thermodynamically well-defined crossover temperature T-1 at which the product of the configurational entropy and the temperature has an inflection point. Since the predicted temperature dependence of the configurational entropy and structural relaxation time are quite different in these temperature regimes, we introduce separate definitions of fragility for each regime. Experimentally established trends in the fragility of polymer melts with respect to variations in polymer microstructure and pressure are interpreted within our theory in terms of the accompanying changes in the chain packing efficiency.