Journal of Colloid and Interface Science, Vol.293, No.1, 69-76, 2006
Formation mechanism of nonspherical gold nanoparticles during seeding growth: Roles of anion adsorption and reduction rate
A small section of nonspherical particles can be observed in the further growth of spherical gold colloids exposed to a mixture of NH2OH and HAuCl4. The concentration ratio of [NH2OH]:[HAuCl4] is critical for the formation of nonspherical particles as higher ratios produce lower yields and smaller of such particles. These concentrations also affect the reaction kinetics; the reaction rate increases with [NH2OH], while independent of [HAuCl4], which we believe is due to the specific adsorption of AuCl4- onto gold surface. These nonspherical particles come from the preferential growth of {111} facets as indicated by their TEM images and electron diffraction patterns. We propose this preferential growth is ascribed to the preferential adsorption of AuCl4- on {111} facets, and some competition which determines the yield of nonspherical particles exists between the AuCl4- adsorption and the AuCl4- reduction, faster reduction counteracting the effect of this preferential adsorption and thus suppressing nonspherical particle. This result probably provides some guidance to develop a shape-controlled synthesis of gold particles without any additives. (c) 2005 Elsevier Inc. All rights reserved.
Keywords:gold nanoparticles;seeding growth;preferential adsorption;shape-controlled;kinetics;nonspherical;AuCl4