화학공학소재연구정보센터
Journal of Colloid and Interface Science, Vol.293, No.1, 1-15, 2006
Particle deposition onto micropatterned charge heterogeneous substrates: Trajectory analysis
A trajectory analysis of particles near a micropatterned charged substrate under radial impinging jet flow conditions is presented to investigate the effect of surface charge heterogeneity on particle trajectory and deposition efficiency. The surface charge heterogeneity is modeled as concentric bands of specified width and pitch having positive and negative surface potentials. The flow distribution is obtained using finite element analysis of the governing Navier-Stokes equations. The particle trajectory analysis takes into consideration the hydrodynamic interactions, gravity, van der Waals and electrostatic double layer interactions. The presence of surface charge heterogeneity on the substrate gives rise to an oscillating particle trajectory near the collector surface due to repulsive and attractive forces. As a result of the coupled effects of hydrodynamic and colloidal forces, the particle trajectories and deposition efficiencies are increasingly affected by surface charge heterogeneity as one moves radially away from the stagnation point. The results indicate that it is possible to render collectors with up to 50% favorable surface fraction completely unfavorable by modifying the ratio of the radial to normal fluid velocity. Utilizing the real favorable area fraction of the collector, the patch model expression for calculating the deposition efficiency is modified for impinging jet flow geometry. (c) 2005 Elsevier Inc. All rights reserved.