화학공학소재연구정보센터
Journal of the American Chemical Society, Vol.127, No.42, 14607-14615, 2005
Determination of O[H] and CO coverage and adsorption sites on PtRu electrodes in an operating PEM fuel cell
A special in situ PEM fuel cell has been developed to allow X-ray absorption measurements during real fuel cell operation. Variations in both the coverage of O[H] (O[H] indicates O and/or OH) and CO (applying a novel Delta mu(L3) = mu(L3)(V) - mu(L3)(ref) difference technique), as well as in the geometric (EXAFS) and electronic (atomic XAFS) structure of the anode catalyst, are monitored as a function of the current. In hydrogen, the NP1-Ru coordination number increases much slower than the NPt-Pt with increasing current, indicating a more reluctant reduction of the surface Pt atoms near the hydrous Ru oxide islands. In methanol, both O[H] and CO adsorption are separately visible with the Delta mu technique and reveal a drop in CO and an increase in OH coverage in the range of 65-90 mA/cm(2). With increasing OH coverage, the Pt-O coordination number and the AXAFS intensity increase. The data allow the direct observation of the preignition and ignition regions for OH formation and CO oxidation, during the methanol fuel cell operation. It can be concluded that both a bifunctional mechanism and an electronic ligand effect are active in CO oxidation from a PtRu surface in a PEM fuel cell.