- Previous Article
- Next Article
- Table of Contents
Journal of Applied Electrochemistry, Vol.35, No.11, 1045-1050, 2005
Synthesis and electrochemical behaviour of tin oxide for use as anode in lithium rechargeable batteries
SnO2 was synthesized by precipitation from an aqueous solution of SnCl4 and NH4OH, followed by a heat treatment. The product was characterized by XRD, SEM, FTIR spectroscopy, DSC and TG. The XRD patterns suggest the formation of phase-pure cassiterite form of SnO2. SEM imaging indicates that the particles obtained are of sub-micron size with good morphology and size control (around similar to 300 nm). Electrodes were fabricated by a slurry-coating procedure and the electrochemical performances of these electrodes were evaluated using galvanostatic cycling tests. The results suggest that the heat treated SnO2 samples deliver higher capacities when cycled between 1.0 and 0.1 V vs. Li+/Li and showed coulombic efficiencies of more than 98% in the tenth cycle.