Langmuir, Vol.21, No.21, 9689-9697, 2005
Cross linking and rheological characterization of adsorbed protein layers at the oil-water interface
The dilatational rheological properties of cross-linked protein layers adsorbed at the oil-water interface were investigated with help of a modified drop tensiometer allowing successive replacements of the external phase. This setup enables one to perform cross-linking reactions at the interface only, that is, without any contact between the cross-linking agent and protein molecules in solution, under continuous monitoring of the interfacial tension. The mechanical properties of the resulting interface were investigated with dilatational large strain experiments. Measured rheological properties were related to the expected stability of an emulsion against disproportionation by considering the ratio of the interfacial elasticity to the interfacial tension. In an attempt to increase this ratio to improve the resistance against disproportionation, experiments were performed with densified protein layers obtained via reduction of the droplet area prior to cross linking. To highlight the influence of the protein morphology on the dilatational rheological properties of the cross-linked adsorbed layers, experiments were performed with random coil (beta-casein) as well as globular (beta-lactoglobulin) proteins. Glutaraldehyde was used as a cross-linking agent. Experiments were performed at 55 degrees C and pH 7.0 in 20 mM imidazole buffer for later comparison with enzymatically crosslinked adsorbed protein layers. The present work demonstrated substantial qualitative and quantitative differences in the interfacial rheological properties of cross-linked random coil and globular proteins.