Langmuir, Vol.21, No.21, 9495-9501, 2005
Colloid stability of sodium dihexadecyl phosphate/poly(diallyldimethylammonium chloride) decorated latex
The colloid stability of supramolecular assemblies composed of the synthetic anionic lipid sodium dihexadecyl phosphate (DHP) on cationic poly(diallyldimethylammonium chloride) (PDDA) supported on polystyrene sulfate (PSS) microspheres was evaluated via turbidimetry kinetics, dynamic light scattering for particle sizing, zeta-potential analysis, and determination of DHP adsorption on PDDA-covered particles. At 0.05 g/L PDDA and 5 x 10(9) PSS particles/mL, PDDA did not induce significant particle flocculation and a vast majority of PDDA covered single particles were present in the dispersion so that this was the condition chosen for determining DHP concentration (C) effects on particle size and zeta-potentials. At 0.8 mM DHP, charge neutralization, maximal size, and visible precipitation indicated extensive flocculation and minimal colloid stability for the DHP/PDDA/PSS assembly. At 0.05 g L-1 PDDA, isotherms of high affinity for DHP adsorption on PDDA-covered particles presented a plateau at a limiting adsorption of 135 x 10(19) DHP molecules adsorbed per square meter PSS which was well above bilayer deposition on a smooth particle surface. The polyelectrolyte layer on hydrophobic particles was swelled and fluffy yielding ca. 6 +/- 1.5 nm hydrodynamic thickness. Maximal and massive adsorption of DHP lipid onto this layer produced polydisperse DHP/PDDA/PSS colloidal particles with low colloid stability and which, at best, remained aggregated as doublets over a range of large lipid concentrations so that it was not possible to evaluate the mean total thickness for the deposited film. The assembly anionic lipid/cationic PDDA layer/polymeric particle was relatively stable as particle doublets only well above charge neutralization of the polyelectrolyte by the anionic lipid, at relatively large lipid concentrations (above 1 mM DHP) with charge neutralization leading to extensive particle aggregation.