화학공학소재연구정보센터
Journal of the American Chemical Society, Vol.127, No.38, 13207-13212, 2005
NMR spectroscopic characterization of millisecond protein folding by transverse relaxation dispersion measurements
The cold shock protein CspB adopts its native and functional tertiary structure on the millisecond time scale. We employed transverse relaxation NMR methods, which allow a quantitative measurement of the cooperativity of this fast folding reaction on a residue basis. Thereby, chemical exchange contributions to the transverse relaxation rate (R-2) were observed for every residue of CspB verifying the potential of this method to identify not only local dynamics but also to characterize global events. Toward this end, the homogeneity of the transition state of folding was probed by comparing Chevron plots (i.e., dependence of the apparent folding rate on the denaturant concentration) determined by stopped-flow fluorescence with Chevron plots of six residues acquired by R-2 dispersion experiments. The coinciding results obtained for probes at different locations in the three-dimensional structure of CspB indicate the ability and significance of transverse relaxation NMR to determine Chevron plots on a residue-by-residue basis providing detailed insights on the nature of the transition state of folding.