화학공학소재연구정보센터
Journal of the American Chemical Society, Vol.127, No.37, 12847-12855, 2005
A gadolinium chelate for detection of beta-glucuronidase: A self-immolative approach
New classes of physiologically responsive magnetic resonance (MR) contrast agents are being developed that are activated by enzymes, secondary messengers, pH, and temperature. To this end, we have prepared a new class of enzyme-activated MR contrast agents using a self-immolative mechanism and investigated the properties of these agents using novel in vitro assays. We have synthesized in nine steps a Gd(III) agent 1 that is activated by the oncologically significant beta-glucuronidase. 1 consists of Gd(III)DO3A (DO3A = 1,4,7-tricarboxymethylene-1,4,7,10-tetraazacyclododecane) bearing a pendant beta-glucuronic acid moiety connected by a self-immolative linker to the macrocycle. LC-MS analysis reveals that 1 is enzymatically processed as predicted by bovine liver beta-glucuronidase, generating 2-aminoethyl-GdDO3A, 2. Compound 2 was prepared independently in a four-step synthetic procedure. Complex 1 displays a decrease in relaxivity upon titration with bicarbonate anion. The relaxivity increases when 1 is converted to 2 in a buffer mimicking in vivo anion concentrations (Parker, D. In Crown Compounds: Towards Future Applications; Cooper, S. R., Ed.; VCH: New York, 1992; pp 51-67) by 17%, while the relaxivity decreases by 27% for the same experiment in human blood serum. Hydrolytic kinetics catalyzed by bovine liver beta-glucuronidase at interstitial pH = 7.4 fit the Michaelis-Menten model with k(cat/Km) = 74.9 +/- 10.9 M-1 s(-1). Monitoring of bulk water proton T-1 during incubation with enzyme shows an increase in T-1 that mirrors results obtained through the relaxivity measurements of compounds 1 and 2.