화학공학소재연구정보센터
Journal of Physical Chemistry B, Vol.109, No.38, 17887-17891, 2005
Efficient light harvesting and energy transfer in organic anorganic hybrid multichromophoric materials
Thin films of silica hybrid materials consisting of two to three covalently bound organic chromophores at different ratios were conveniently synthesized and fabricated. The photophysical properties of these materials have been studied. The fluorescence spectra reveal complete fluorescence resonance energy transfer (FRET) from donor to acceptor, and the light-harvesting ability of these hybrid materials increases with increasing the molar fraction of donor chromophore. In a three-chromophore system, the energy is transferred from 300 to 530 nm successfully. Time-resolved fluorescence experiments are employed to elucidate the average rates and efficiencies (84-97%) of energy transfer in these organic/inorganic hybrid systems. The hybrid materials have been shown to provide antenna effect to facilitate energy transfer and light harvesting.