화학공학소재연구정보센터
Journal of Physical Chemistry B, Vol.109, No.37, 17496-17502, 2005
Green emission from end-group-enhanced aggregation in polydioetylfluorene
Green emission in polyfluorenes (PFs) has been attributed to aggregation or excimer emission, but recently it was reassigned as an on-chain fluorenone defect. We show here that, in dialkyl-substituted PFs that is hydrogen-free at the 9'-position of the fluorene, blue emission with very weak green emission is observed from end-capped polydioctylfluorene (PFO) for both photoluminescence and electroluminescence spectra, while the low-energy green emission at 507 nm is very pronounced only in uncapped PFO (PFOun). The facts that there is no detectable infrared absorption at around 1721 cm(-1) due to > C=O stretching vibration in PFOun and no charge-trapping occurring in the light-emitting device from PFOun are in contrast with those found in the literature-reported copolymers with fluorenone units, which have detectable infrared absorption at 1721 cm(-1) and charge-trapping in devices. We found that this green emission at around 507 nm originates from the end-group-enhanced aggregation by use of UV-vis absorption, photoexcitation spectra, and steady-state photoluminescent and electroluminescent spectra. The end-group-enhanced aggregation is much weaker in other PFs with less-ordered structures.