Journal of Physical Chemistry A, Vol.109, No.38, 8560-8567, 2005
Mechanistic insights into the Bazarov synthesis of urea from NH3 and CO2 using electronic structure calculation methods
The mechanism of the noncatalyzed and reagent-catalyzed Bazarov synthesis of urea has extensively been investigated in the gas phase by means of density functional (B3LYP/6-31G(d,p)) and high quality ab initio (CBS-QB3) computational techniques. It was found that the first step of urea formation from NH3(g) and CO2(g) corresponds to a simple addition reaction leading to the carbamic acid intermediate, a process being slightly endothermic. Among the three possible reaction mechanisms considered, the addition-elimination addition (AEA) and the double addition-elimination (DAE) mechanisms are almost equally favored, while the concerted (C) one was predicted kinetically forbidden. The second step involves the formation of loose adducts between NH3 and carbamic acid corresponding to an ammonium carbamate intermediate, which subsequently dehydrates to urea. The formation of "ammonium carbamate" corresponds to an almost thermoneutral process, whereas its dehydration, which is the rate-determining step, is highly endothermic. The Bazarov synthesis of urea is strongly assisted by the active participation of extra NH3 or H2O molecules (autocatalysis). For all reaction pathways studied the entire geometric and energetic profiles were computed and thoroughly analyzed. The reaction scheme described herein can be related with the formation of both isocyanic acid, H-N=C=O, and carbamic acid, H2N-COOH, as key intermediates in the initial formation of organic molecules, such as urea, under prebiotic conditions.