화학공학소재연구정보센터
Journal of Physical Chemistry A, Vol.109, No.38, 8515-8519, 2005
Canard explosion and coherent biresonance in the rate oscillation of CO oxidation on platinum surface
The relationship between canard explosion and coherent biresonance is analyzed by numerically investigating a temporal dynamical model of CO oxidation on Pt surface. Canard explosion, manifesting itself by a dramatic change in the amplitude and period of a periodic orbit within a very narrow interval of a control parameter, is the result of multiple time scales in a dynamical system and is common in excitable systems. Coherent biresonance, namely, two peaks on the signal-to-noise ratio (SNR) curve when varying noise intensity, is a novel phenomenon of coherent resonance which is well-known in excitable systems. When the control parameter is varied from a stable fixed point, crossing the supercritical Hopf bifurcation, one of the peaks that corresponds to relatively larger noise intensity, keeps a constant height and position, while the other becomes higher and moves to lower noise level. When we consider the case in which two control parameters are perturbed by independent noise simultaneously, an interesting picture of one valley between two ridges appears on the 3D surface of SNR.