IEEE Transactions on Automatic Control, Vol.50, No.9, 1447-1450, 2005
Minimal positive realizations of transfer functions with nonnegative multiple poles
This note concerns a particular case of the minimality problem in positive system theory. A standard result in linear system theory states that any nth-order rational transfer function of a discrete time-invariant linear single-input-single-output (SISO) system admits a realization of order n. In some applications, however, one is restricted to realizations with nonnegative entries (i.e., a positive system), and it is known that this restriction may force the order N of realizations to be strictly larger than n. A general solution to the minimality problem (i.e., determining the smallest possible value of N) is not known. In this note, we consider the case of transfer functions with nonnegative multiple poles, and give sufficient conditions for the existence of positive realizations of order N = n. With the help of our results we also give an improvement of an existing result in positive system theory.