화학공학소재연구정보센터
Polymer, Vol.46, No.19, 8079-8090, 2005
Effect of microstructure of acrylic copolyrner/terpolyrner on the properties of silica based nanocomposites prepared by sol-gel technique
Acrylic copolymers/terpolymers with different comonomer contents were prepared by solution polymerization. Copolymers/terpolymers-silica hybrid composites were synthesized by acid catalyzed sol-gel technique using tetraethoxysilane (TEOS) as silica precursor. Microstructure of the copolymers and the terpolymers was analyzed by C-13 nuclear magnetic resonance and Fourier transform infrared (FTIR) spectroscopy. The hybrid composites were characterized by scanning electron microscopy (SEM), FTIR, thermogravimetry, dynamic mechanical thermal analysis (DMTA) and their mechanical properties. The results showed that an increase in hydrophilicity of the polymer matrix and the ratio of ethyl to butyl acrylate, and incorporation of acrylic acid as termonomer helped in finer dispersion of silica and prevented macrophase separation. There was no evidence of chemical interaction between the polymer and the dispersed silica phase. Dynamic mechanical thermal analysis indicated mechanical reinforcement within the hybrid composites. As a result, these composites demonstrated superior tensile strength and tensile modulus with increasing proportion of TEOS up to a certain level. At a particular TEOS concentration, the tensile properties improved with increasing hydrophilicity of the polymer matrix and acrylic acid modification. The mechanism for improvement in mechanical and dynamic mechanical properties of the hybrids was discussed. (c) 2005 Elsevier Ltd. All rights reserved.