Polymer, Vol.46, No.18, 6746-6755, 2005
Potential tissue implants from the networks based on 1,5-dioxepan-2-one and epsilon-caprolactone
The synthesis and characterization of degradable polymeric networks for biomedical applications was performed. Cross-linked films of poly(epsilon-caprolactone) (PCL) and poly(1,5-dioxepan-2-one) (PDXO) having various mole fractions of monomers and different cross-link densities were successfully prepared using 2,2'-bis-(epsilon-caprolactone-4-yl) propane (BCP) as cross-linking agent. Reaction parameters were carefully examined to optimise, the film-formin.,, conditions. Networks obtained were elastomeric materials. easy to cast and remove from the mould. Effect of CL content and cross-link density on the final properties of the polymer network was evaluated. High CL content or degree of cross-linking led to increase in Young's modulus and decrease in elongation at break. An increase in crystalline domains in films having a higher CL content was observed by optical microscopy. A greater thermal stability was observed in films having a high CL content. The hydrophilicity of the materials could be tailored by changing the CL content. The surface of the films became rougher with higher CL content. (c) 2005 Elsevier Ltd. All rights reserved.