Journal of the American Chemical Society, Vol.127, No.30, 10699-10706, 2005
Can the pi-facial selectivity of solvation be predicted by atomistic simulation?
This work is concerned with the rationalization and prediction of solvent and temperature effects in nucleophilic addition to a-chiral carbonyl compounds leading to facial diastereoselectivity. We study, using molecular dynamics simulations, the facial solvation of (R)-2-phenyl-propionaldehyde in n-pentane and n-octane at a number of temperatures and compare it with experimental selectivity data for the nBuLi addition leading to syn- and anti- (2R)-2-phenyl-3-heptanol, which give nonlinear Eyring plots with the presence of inversion temperatures. We have found from simulations that the facial solvation changes with temperature and alkane. Moreover, by introducing a suitable molecular chirality index we have been able to predict break temperatures (T-Cl) for the two solvents within less than 20 degrees of the inversion temperatures experimentally observed in the diastereoselective nBuLi addition. We believe this could lead to a viable approach for predicting inversion temperatures and other subtle solvent effects in a number of stereoselective reactions.