Journal of Physical Chemistry B, Vol.109, No.30, 14544-14550, 2005
RNA selectively interacts with vesicles depending on their size
RNA and vesicles are two important molecular classes in the origin of life and early evolution, but they are not generally considered as interacting partners. The present paper reports about the interaction between tRNA (Esherichia coli) and vesicles made of the zwitterionic surfactant POPC (1-palmitoyl-2-oleoyl-snglycero-3-phosphocholine), partially positively charged with small molar fractions (max 10%) of the single-chained CTAB (cetyltrimethylammonium bromide). CTAB is capable to insert efficiently in POPC vesicles (as determined by zeta-potential measurements), and the binding of tRNA to such charged vesicles operates a strong selection being critically dependent upon the vesicle size. The binding of tRNA to the vesicles is size-selective as it induces a strongly pronounced process of aggregation of large vesicles (ca. 160-nm diameter) but not of small ones (ca. 80-mn diameter) that are stable against vesicle aggregation (as followed by dynamic light-scattering and optical density measurements). The aggregation of the large vesicles is fully reversible upon the addition of RNase A. The selective behavior of tRNA with respect to differently sized vesicles is observable in separated samples as well as in a mixture of both populations. In the latter case, the fraction of large vesicles readily aggregates in the presence of the small ones that remain unaltered in the mixture. This kind of discrimination capability of RNA might have been of importance in the early phases of the formation of the protocells.