화학공학소재연구정보센터
Journal of Physical Chemistry B, Vol.109, No.27, 13392-13396, 2005
Quantum chemical design of hydroxyurea derivatives for the treatment of sickle-cell anemia
Treatment of sickle-cell anemia by hydroxyurea has been shown to decrease patient mortality by 40%. In a rate-limiting step, hydroxyurea reacts with hemoglobin to form the nitroxide radical, which then decomposes to yield nitric oxide (NO). In this paper, we examine derivatives of hydroxyurea and their radicals by quantum chemical methods to identify derivatives that generate NO-producing radicals at a faster rate than hydroxyurea. The molecules are treated with Hartree-Fock theory, correlated wave function methods such as perturbation theory and coupled-cluster methods, and density functional theory. We observe that the inclusion of the correlation energy is important for an accurate comparison of the energy changes associated with modifications of the hydroxyurea molecule and its radical. The computational results are compared with available experimental data. All 19 derivatives of hydroxyurea, including a new medication for asthma Zileuton, manifest changes in their electronic energies that mark them as candidates for a faster formation of NO-producing radicals.