Journal of Physical Chemistry B, Vol.109, No.27, 13322-13326, 2005
Lithium ion phase-transfer reaction at the interface between the lithium manganese oxide electrode and the nonaqueous electrolyte
The lithium ion phase-transfer reaction between the spinel lithium manganese oxide electrode and a nonaqueous electrolyte was investigated by the ac impedance spectroscopic method. The dependence of the impedance spectra on the electrochemical potential of the lithium ion in the electrode, the lithium salt concentration in the electrolyte, the kind of solvent, and the measured temperature were examined. Nyquist plots, obtained from the impedance measurements, consist of two semicircles for high and medium frequency and warburg impedance for low frequency, indicating that the reaction process of two main steps for high and medium frequency obey the Butler-Volmer type equation and could be related to the charge-transfer reaction process accompanied with lithium ion phase-transfer at the interface. The dependency on the solvent suggests that both steps in the lithium ion phase-transfer at the electrode/electrolyte interface include the desolvation process and have. high activation barriers.