Polymer, Vol.46, No.14, 5268-5277, 2005
Toward an understanding of thermoresponsive transition behavior of hydrophobically modified N-isopropylacrylamide copolymer solution
Poly(N-isopropylacrylamide-co-vinyl laurate)(PNIPAAm-co-VL) copolymers were prepared at various feed ratios via conventional radical random copolymerization. The formation, composition ratios and molecular weight of copolymers were examined. The thermoresponsive behaviors of PNIPAAm and PNIPAAm-co-VL solutions at low and high concentrations were intensively investigated by turbidity measurement, Micro-DSC, temperature-variable state fluorescence, H-1 NMR and dynamic light scattering (DLS). Several important results were obtained that (1) incorporation of PVL results in much lower and broader LCST regions of the copolymer solutions, and facilitates the formation of hydrophobic microdomains far below LCST, causing a pronounced aggregation in solutions (2) temperature-variable H-1 NMR spectra shows that during the phase transition, the 'penetration' of PNIPAAm into the hydrophobic core is a process accompanied with a transition of isopropyl from hydration to dehydration as well as a self-aggregation of hydrophobic chains at different temperature stages (3) according to the H-1 NMR spectra of polymer solutions obtained at varied temperatures, the microdomains from hydrophobic VL moieties have a different accessibility for isopropyl groups and the entire chains during phase transition (4) temperature-variable DLS demonstrates that the temperature-induced transition behavior of copolymers is supposedly divided into three stages: pre-LCST aggregation (< 20 degrees C), coil-globule transition at LCST (20-25 degrees C) and post-LCST aggregation (> 25 degrees C). (c) 2005 Elsevier Ltd. All rights reserved.