Journal of Physical Chemistry B, Vol.109, No.26, 12920-12926, 2005
Enantioselectivity of adsorption sites created by chiral 2-butanol adsorbed on Pt(111) single-crystal surfaces
The adsorption and thermal chemistry of 2-butanol and propylene oxide, each individually and when coadsorbed together, were characterized on Pt(111) single-crystal surfaces by using temperature programmed desorption and reflection- adsorption infrared spectroscopies. The formation of chiral superstructures on the surface upon the deposition of submonolayer coverages of enantiopure 2-butoxide species, produced by thermal dehydrogenation of 2-butanol, was highlighted by their difference in behavior toward the adsorption of the two enantiomers of propylene oxide. It was found that a significant enhancement in adsorption is possible on surfaces with the same chirality of the probe molecule, that is, for (R)-propylene oxide adsorption on (R)2-butoxide layers and for (S)-propylene oxide adsorption on (S)-2-butoxide layers. The propylene oxide probe was found to also adsorb with the ring closer to the surface in those cases. Finally, less butoxide decomposition is seen at higher temperatures from the homochiral pairing, presumably because the coadsorbed propylene oxide forces the alkoxides into a more compact and better packed structure on the surface.