화학공학소재연구정보센터
Langmuir, Vol.21, No.12, 5570-5575, 2005
Synthesis and purification of oxide nanoparticle dispersions by modified emulsion precipitation
ZrO2 and Fe2O3 precursor nanoparticles are synthesized, well-dispersed in decane, via a modified emulsion precipitation (MEP) method. This method starts with preparing two thermostable water-in-oil (w/o) emulsions with nonylphenol tetra(ethylene glycol) ether (Arkopal-40) as the main surfactant, didodecyldimethylammonium bromide (DiDAB) as the cosurfactant, decane as the continuous oil phase, and either a metal salt solution or a hexamethylenetetramine (HMTA) precipitation agent solution as the dispersed water phase. After mixing of the two emulsions, individual precursor particles are formed by precipitation in the confinement of the aqueous solution droplets. Excess water is removed by azeotropic distillation, and steric stabilization of the particles in the remaining oil medium is achieved with poly(octadecyl methacrylate) (PODMA), initially present dissolved in the oil phase. A purification process is conducted to remove the precipitation reaction byproduct and excess surfactants from the nanoparticle dispersions. Transmission electron microscopy (TEM) characterization shows that the ZrO2 and Fe2O3 precursor nanoparticles are both nonagglomerated, spherical, and have a narrow particle size distribution, centered at 4 nm in diameter. The precipitation from the dispersion of byproduct NH4Cl after water removal, and insoluble surfactant DiDAB after dilution with pure decane, is confirmed by X-ray diffraction (XRD). NMR results show that most of the oil-soluble surfactant Arkopal-40 can be removed from the dispersion by a 3x repeated dead-end pressure filtration process. It is shown that, after purification, the nanoparticle dispersions can be used for the preparation of homogeneous nanostructured coatings. The purification procedure as discussed provides guidelines for upscaling the process and reuse of emulsifiers.