화학공학소재연구정보센터
Langmuir, Vol.21, No.12, 5362-5366, 2005
Role reversal in a supramolecular assembly: a chiral cyanine dye controls the helicity of a peptide-nucleic acid duplex
A new dicarbocyanine dye bearing branched, chiral N-alkyl substituents was synthesized and its ability to form helical aggregates on peptide nucleic acid (PNA) double-helical templates was studied. The dye aggregates less effectively than an analogous dye bearing linear, achiral substituents, presumably due to steric problems with packing the branched substituents compared with the linear substituents. When the PNA duplex has a left-handed helicity, addition of the achiral dye leads to formation of a left-handed dye aggregate. However, when the chiral dye aggregates in the presence of this duplex, a right-handed structure is formed, suggesting that the dye alters the helicity of the underlying template. When a racemic PNA duplex (i.e., equal amounts of right- and left-handed helices) is used, no chirality is observed for the dye aggregate formed by the achiral dye but a right-handed helical aggregate is once again formed by the chiral dye. These results indicate that chirality is transferred from the dye to the PNA, as opposed to other examples of polymer-templated dye aggregation where chirality is transferred from the template to the dye.