Langmuir, Vol.21, No.12, 5332-5336, 2005
Inkjet-printed monolayers as platforms for tethered polymers
Combining inkjet printing and atom-transfer radical polymerization (ATRP) provides a straightforward and versatile method for producing patterned polymer surfaces that may serve as platforms for a variety of applications. We report the use of drop-on-demand technology to print binary chemical gradients and simple patterns onto solid substrates and, by using surface-confined ATRP, amplify these patterns and gradients. Chemically graded monolayers prepared by inkjet printing dodecanethiol and backfilling with 11-mercaptoundecanol showed continuous changes in the water contact angle along the gradient. These samples also exhibited a distinct change in the intensity of methyl group and C-O stretching modes along the gradient. Graded or patterned polymer layers were produced by growing, with ATRP, tethered poly(methyl methacrylate) (PMMA) layers from gradient or patterned printed monolayers that contained a bromo-capped initiator. Atomic force microscopy and optical microscopy confirmed that the PMMA layers amplified the underlying printed initiator layer with remarkable fidelity.