Journal of Physical Chemistry B, Vol.109, No.21, 10620-10630, 2005
Vibronic interactions in negatively charged polyacetylene
Electron-phonon interactions in the monoanions of polyacetylenes such as C2H4 (2tpa), C4H6 (4tpa), C6H8 (6tpa), and C8H10 (8tpa) are studied and compared with those in the monoanions of polyacenes. The C-C stretching Ag modes around 1500 cm(-1) the most strongly couple to the lowest unoccupied molecular orbitals (LUMO) in polyacetylenes. The estimated total electron-phonon coupling constants for the monoanions (l(LUMO)) are 0.579, 0.555, 0.463, and 0.401 eV for 2tpa, 4tpa, 6tpa, and 8tpa, respectively. The l(LUMO) values for polyacetylenes are much larger than those for polyacenes. Furthermore, the l(LUMO) value for polyacetylene with C-2h geometry is estimated to be 0.254 eV, and is larger than that (0.024 eV) for polyacene with D-2h geometry. The phase patterns difference between the LUMO of polyacenes localized on the edge part of carbon atoms, and the delocalized LUMO of polyacetylenes is the main reason for the calculated results. The single charge transfer through the molecule in polyacetylenes are also discussed. The reorganization energies between the neutral molecule and the corresponding monoanion are estimated to be 0.164, 0.144, 0.125, and 0.113 eV for 2tpa, 4tpa, 6tpa, and 8tpa, respectively. Such reorganization energy decreases with an increase in molecular size. The conditions under which the attractive electron-electron interactions are realized in the monoanions of polyacetylenes and polyacenes are discussed. In terms of the electron-phonon interactions and the reorganization energies, the relationships between the normal and possible superconducting states are briefly discussed. We find that the monoanions with smaller molecular size cannot easily become good conductors, however, the conditions under which the interactions between two electrons are attractive are more easily realized in the monoanions with smaller molecular size than in the monoanions with larger molecular size.