Journal of Physical Chemistry B, Vol.109, No.19, 9575-9580, 2005
Novel electrodeposition behavior of ni on porous anodic alumina templates without a conductive interlayer
During template-assisted electrodeposition, single-crystalline metallic nanowires could be obtained only when the overpotential is low. However, an unusual electrodeposition behavior on the PAA/Si substrate without a conductive interlayer between the template and Si is described in the present study. Through the electrical breakdown of the template, Ni nanodots, nanowires and nanotubes could be obtained by only changing the electrodeposition voltage on the same substrate. The mechanisms leading to the formation of various nanostructures are described in detail and compared with those for the conventional template-assisted electrodeposition process. The electrodeposition first occurred on the pore wall instead of from the underlying substrate, leading to the formation of some Ni nanotubes at a more negative voltage. Besides, single-crystalline Ni nanowires could also be formed even when the electrodeposition voltage was as negative as -40 V, indicating that the formation of single-crystalline metallic nanowires under a large overpotential is possible.