화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.22, No.4, 560-565, July, 2005
The Effects of Sulfur Doping on the Performance of O3-Li0.7[Li1/12Ni1/12Mn5/6]O2 Powder
E-mail:
Li0.7[Li1/12Ni1/12Mn5/6]O2 and Li0.7[Li1/12Ni1/12Mn5/6]O2.ySy (y=0.1, 0.2, 0.3) powders were synthesized by using a sol-gel method. As-prepared samples showed typical rhombohedral O3 layered structure. The shape of the initial discharge curve for the samples was almost equal to that of the layered structure. However, the electrode materials were transferred from layered to spinel structures with cycling. At the first cycle, Li0.7[Li1/12Ni1/12Mn5/6]O2 and Li0.7[Li1/12Ni1/12 Mn5/6]O1.9S0.1, Li0.7[Li1/12Ni1/12Mn 5/6]O1.8S0.2, and Li0.7[Li1/12Ni1/12Mn5/6]O1.7S0.3 delivered the discharge capacities of 238, 230, 224, and 226 mAh/g, respectively, with their capacity fading rates of 0.34, 0.21, 0.12, 0.25%/cycle, respectively. The partial substitutions of Ni and S for Mn and O in Li0.7[Li1/12Ni1/12Mn5/6]O2 significantly enhanced the electrochemical properties of the lithium manganese oxide materials.
  1. Amatucci GG, Pereira N, Zheng T, Tarascon JM, J. Electrochem. Soc., 148(2), A171 (2001) 
  2. Ammundsen B, Paulsen J, Adv. Mater., 13, 943 (2001) 
  3. Liu W, Farrington GC, Chaput F, Dunn B, J. Electrochem. Soc., 143(3), 879 (1996) 
  4. Armstrong AR, Gitzendanner R, Robertson AD, Bruce PG, Chem. Commun., 1833 (1998) 
  5. Annstrong AR, Robertson AD, Gitzendanner R, Bruce PG, J. Solid State Chem., 145, 549 (1999) 
  6. Bruce PG, Armstrong AR, Gitzendanner RL, J. Mater. Chem., 1, 193 (1999) 
  7. Chiang YM, Sadoway DR, Jang YI, Huang B, Wang H, Electrochem. Solid State Lett., 2, 107 (1999) 
  8. Dahn JR, Scken UV, Michal CA, Solid State Ion., 44, 87 (1990) 
  9. Davidson IJ, McMillan RJ, Slegr H, Luan B, Kargina I, Murray JJ, Swainson IP, J. Power Sources, 82, 406 (1999) 
  10. Goodenough JB, Le Journal de Physique et le Radium, 20, 155 (1959)
  11. Guyomard D, Tarascon JM, Solid State Ion., 69(3-4), 222 (1994) 
  12. Jang YI, Huang B, Chiang YM, Sadoway DR, Electrochem. Solid State Lett., 1, 13 (1998) 
  13. Lee YS, Sun YK, Nahm KS, Solid State Ion., 118(1-2), 159 (1999) 
  14. Naghash AR, Lee JY, Electrochim. Acta, 46(15), 2293 (2001) 
  15. Naghash AR, Lee JY, Electrochim. Acta, 46(7), 941 (2001) 
  16. Nitta Y, Okamura K, Haraguchi K, Kobayashi S, Ohata A, J. Power Sources, 54, 511 (1995) 
  17. Ohuzuku T, Ueda A, Nagyama M, J. Electrochem. Soc., 140, 1862 (1993) 
  18. Park KS, Cho MH, Park SH, Nahm KS, Sun YK, Lee YS, Yoshio M, Electrochim. Acta, 47(18), 2937 (2002) 
  19. Park KS, Cho MH, JIn SJ, Song CH, Nahm KS, Korean J. Chem. Eng., 5, 21 (2004)
  20. Park SH, Park KS, Cho MH, Sun YK, Nahm KS, Lee YS, Yoshio M, Korean J. Chem. Eng., 19(5), 791 (2002)
  21. Park SH, Park KS, Moon SS, Sun YK, Nahm KS, J. Power Sources, 92(1-2), 244 (2001) 
  22. Park SH, Park KS, Sun YK, Nahm KS, J. Electrochem. Soc., 147(6), 2116 (2000) 
  23. Park SH, Sun YK, Park KS, Nahm KS, Lee YS, Yoshio M, Electrochim. Acta, 47(11), 1721 (2002) 
  24. Paulsen JM, Dahn JR, J. Electrochem. Soc., 147(7), 2478 (2000) 
  25. Quine TE, Duncan MJ, Armstrong AR, Robertson AD, Bruce PG, J. Mater. Chem., 12, 2838 (2000) 
  26. Sun YK, Kim DW, Korean J. Chem. Eng., 16(4), 449 (1999)
  27. Sun YK, Kim DW, Jin SH, Hyung YE, Moon SI, Park DK, Korean J. Chem. Eng., 15(1), 64 (1998)
  28. Sun YK, Lee YS, Yoshio M, Mater. Lett., 56(4), 418 (2002)