Chemical Engineering Science, Vol.60, No.13, 3487-3495, 2005
Prediction of phase inversion in agitated vessels using a two-region model
Phase inversion in agitated vessels was studied using a two-region model. In this model, breakup and coalescence were assumed to take place in the vicinity of the impeller and away from that region, respectively. The mechanism of phase inversion was regarded as the result of an imbalance between the breakup and coalescence processes. Hence phase inversion was assumed to occur when the coalescence frequency exceeded that of breakup. In addition, the concept of a radial distribution function was adopted in the model in order to account for droplet coalescence in concentrated dispersions. Using the two-region model, the effect of interfacial tension, viscosity, density and impeller size on the width of the ambivalent range was investigated. The predictions agree well with experimental data particularly for the upper curve of the ambivalent range; however, the organic phase fraction of the lower curve is in some cases underestimated by the model. (c) 2005 Elsevier Ltd. All rights reserved.