Journal of the American Chemical Society, Vol.127, No.16, 5957-5963, 2005
The mechanism of selective purine C-nitration revealed: NMR studies demonstrate formation and radical rearrangement of an N7-nitramine intermediate
Modified purine derivatives are of great importance in biomedical sciences, and substitution reactions on the purine skeleton are intensively studied. In our laboratory, an efficient and selective purine U-nitration reaction was developed using a mixture of tetrabutylammonium nitrate and trifluoroacetic anhydride. The resulting 2-nitro moiety appeared to be a versatile handle to introduce a variety of pharmacophores onto the purine skeleton. Since the mechanism of this selective purine C2-nitration reaction has remained unclear, we now present an extensive NMR study leading to its elucidation, using N9-Boc-protected 6-chloropurine as a model compound. Direct electrophilic aromatic nitration of the highly electron-deficient C2 position was excluded, and we demonstrate that this reaction occurs in a three-step process. Electrophilic attack by trifluoroacetyl nitrate on the purine N7 position results in a nitrammonium species that is trapped by a trifluoroacetate anion furnishing N7-nitramine intermediate 11. This intermediate was characterized at -50 degrees C by H-1, C-13, N-15, and F-19 NMR. At T > -40 degrees C, the N7-nitramine intermediate undergoes a nitramine rearrangement, which generates a C2-nitro species that immediately eliminates TFA to give 2-nitro-6-chloro-9-Boc purine 10. The involvement of radicals during the nitramine rearrangement was unequivocally established by N-15-CIDNP. Moreover, the emission signal observed for the rearranged product, 2-nitropurine 10, showed that it is primarily formed in an intermolecular process. A quantitative radical trapping experiment finally disclosed that 65-70% of the nitramine rearrangement takes place intermolecularly.